К какому типу веществ относятся пластмассы какие свойства пластмасс
Пластмассы (пластики) представляют собой органические материалы на основе полимеров, способные при нагреве размягчаться и под давлением принимать определённую устойчивую форму.
Полимеры – это соединения, которые получаются путем многократного повторения (рис. 1), то есть химического связывания одинаковых звеньев – в самом простом случае, одинаковых, как в случае полиэтилена это звенья CH2, связанные между собой в единую цепочку. Конечно, существуют более сложные молекулы, вплоть до молекул ДНК, структура которых не повторяется, очень сложным образом организована.
Рис. 1. Формы макромолекул полимеров
1. Компоненты, входящие в состав пластмасс
В большинстве своем пластмассы состоят из смолы, а также наполнителя, пластификатора, стабилизатора, красителя и других добавок, улучшающих технологические и эксплуатационные свойства пластмассы. Свойства полимеров могут быть в значительной степени улучшены и изменены, в зависимости от требований, предъявляемых различными отраслями техники, с помощью различных составляющих пластмассы.
Наполнители служат для улучшения физико-механических, диэлектрических, фрикционных или антифрикционных свойств, повышения теплостойкости, уменьшения усадки, а также для снижения стоимости пластмасс. По массе содержание наполнителей в пластмассах составляет от 40 до 70 %. Наполнителями могут быть ткани, а также порошкообразные и волокнистые вещества.
Пластификаторы увеличивают пластичность и текучесть пластмасс, улучшают морозостойкость. В качестве пластификаторов применяют дибутилфталат, трикрезилфосфат и др. Их содержание колеблется в пределах 10 – 20 %.
Стабилизаторы – вещества, предотвращающие разложение полимерных материалов во время их переработки и эксплуатации под воздействием света, влажности, повышенных температур и других факторов. Для стабилизации используют ароматические амины, фенолы, сернистые соединения, газовую сажу.
Красители добавляют для окрашивания пластических масс. Применяют как минеральные красители (мумия, охра, умбра, литопон, крон и т. д.), так и органические (нигрозин, родамин).
Смазочные вещества – стеарин, олеиновая кислота, трансформаторное масло – снижают вязкость композиции и предотвращают прилипание материала к стенкам пресс-формы.
2. Классификация пластмасс
В зависимости от поведения связующего вещества при нагреве пластмассы разделяют на термореактивные и термопластичные.
Термореактивные пластмассы при нагреве до определенной температуры размягчаются и частично плавятся, а затем в результате химической реакции переходят в твердое, неплавкое и нерастворимое состояние. Термореактивные пластмассы необратимы: отходы в виде грата и бракованные детали обычно используют после измельчения только в качестве наполнителя при производстве пресспорошков.
Термопластичные пластмассы при нагреве размягчаются или плавятся, а при охлаждении твердеют. Термопластичные пластмассы обратимы, но после повторной переработки пластмасс в детали физико-механические свойства их несколько ухудшаются.
К группе термореактивных пластмасс относятся пресспорошки, волокниты и слоистые пластики. Они выгодно отличаются от термопластичных пластмасс отсутствием хладотекучести под нагрузкой, более высокой теплостойкостью, малым изменением свойств в процессе эксплуатации. Термореактивные пластмассы перерабатывают в детали (изделия) преимущественно методом прессования или литьё под давлением (рис. 2).
Рис. 2. Схема и установка для получения деталей из термореактивных пластмасс
В таблице 1 приведены свойства, области применения и интервал рабочих температур некоторых термореактивных пластмасс. На рис. 3 показаны некоторые изделия из термореактивных пластмасс.
Таблица 1.
Рис. 3. Изделия, где применены термореактивные пластмассы
Технология изготовления термопластов довольно проста: гранулы засыпаются в камеру термопластавтомата, где, при необходимой температуре, переходят в текучее состояние, затем расплавленная масса попадает в специальную форму, где происходит прессование и дальнейшее охлаждение (рис. 4). Как правило, большинство термопластов может быть использовано вторично.
Рис. 4. Пресс-форма для литья пластмасс
В таблице 2 приведены свойства, области применения и интервал рабочих температур некоторых термопластичных пластмасс. На рис. 5 показаны некоторые изделия из термопластичных пластмасс.
Таблица 2.
Рис. 5. Изделия из термопластичных пластмасс
Выбор пластмассы для изготовления конкретного изделия определяется его эксплуатационными условиями. Критерии выбора разнообразны и зависят от назначения изделия. Основными критериальными характеристиками полимерных материалов являются механические (прочность, жесткость, твердость), температурные (изменения механических и деформационных характеристик при нагревании или охлаждении) и электрические. Последние отражают широкое применение пластмасс в радиоэлектронной и электротехнической отраслях. Кроме того, существенное значение приобрели триботехнические характеристики и ряд специальных свойств (огнестойкость, звукопоглощение, оптические особенности, химическая стойкость). Немаловажны также экономические условия (стоимость полимерного материала, тираж изделия, условия производства).
3. Механические свойства пластмасс
Механические свойства определяют поведение физического тела под действием приложенного к нему усилия. Численно это поведение оценивается прочностью и деформативностью. Прочность характеризует сопротивляемость разрушению, а деформативность — изменение размеров полимерного тела, вызванное приложенной к нему нагрузкой. Поскольку и прочность, и деформация являются функцией одной независимой переменной — внешнего усилия, то механические свойства еще называют деформационнопрочностными (рис. 6).
Рис. 6. Механические испытания пластмасс на деформацию прочность (слева), ударную вязкость (по центру), твёрдость (справа)
Модуль упругости является интегральной характеристикой, дающей представление прежде всего о жесткости конструкционного материала. Ударная вязкость характеризует способность материалов сопротивляться нагрузкам, приложенным с большой скоростью. В практике оценки свойств пластмасс наибольшее применение нашло испытание поперечным ударом, реализуемым на маятниковых копрах.
Твердость определяет механические свойства поверхности и является одной из дополнительных характеристик полимерных материалов. По твердости оценивают возможные пути эффективного применения пластиков. Пластмассы мягкие, эластичные, имеющие низкую твердость, используются в качестве герметизирующих, уплотнительных и прокладочных материалов. Твердые и прочные могут применяться в производстве деталей конструкционного назначения: зубчатых колес и венцов, тяжело нагруженных подшипников, деталей резьбовых соединений и пр. (рис. 7).
Рис. 7. Детали конструкционного применения из пластмасс
В таблице 3 указаны механические свойства термопластов общего назначения.
Таблица 3.
Несколько примеров по обозначению (см. табл. ниже).
ПЭВД | Полиэтилен высокого давления | ГОСТ 16337-77 | |
ПЭНД | Полиэтилен низкого давления | ГОСТ 16338-85 | |
ПС | Полистирольная плёнка | ГОСТ 12998-85 | |
ПВХ | Пластификаторы | ГОСТ 5960-72 | |
АБС | Акрилбутодиентстирол | ГОСТ 8991-78 | |
ПММА | Полиметилметаакрилат | ГОСТ 2199-78 |
4. Сварка пластмасс
Сварке подвергаются только так называемые термопластичные пластмассы (термопласты), которые при нагревании становятся пластичными, а после охлаждения принимают первоначальные вид и свойства. Кроме них, существуют термореактивные пластмассы, которые изменяют свои свойства при нагреве. Нагревать пластмассы при сварке следует не выше температуры их разложения, т. е. в пределах 140—240 °С.
Пластмассы можно сваривать различными способами:
- нагретым газом;
- контактной теплотой от нагревательных элементов;
- трением;
- ультразвуком (рис. 8).
Основные условия для получения качественного соединения пластмасс при сварке следующие:
- Диаметр присадочного прутка не должен превышать 4 мм для достаточно быстрого его нагрева и обеспечения необходимой производительности сварки.
- Сварку следует вести по возможности быстро во избежание термического разложения материала.
- Необходимо точно выдерживать температуру сварки во избежание недостаточного нагрева или перегрева свариваемого материала.
На рис. 8 показано оборудование и методы сварки пластмасс.
Рис. 8. Сварочный экструдер для сварки пластмасс, полимеров
5. Другие свойства пластмасс
Химическая стойкость. Химическая стойкость пластмасс, как правило, выше, чем у металлов. Химическая стойкость пластмасс в основном определяется свойствами связующего (смолы) и наполнителя. Наиболее химически стойкими в отношении всех агрессивных сред являются фторсодержащие полимеры —фторопласты 4 и 3. К числу кислотостойких пластмасс в отношении концентрированной соляной кислоты могут быть отнесены винипласт и фенопласты с асбестовым наполнителем. Стойкими к действию щелочей являются винипласт и хлорвиниловый пластик.
Электроизоляционные свойства. Почти все пластмассы — хорошие диэлектрики. Этим объясняется их широкое применение в электро- и радиотехнике. Большинство пластмасс плохо переносит т. в. ч. и поэтому они применяются в качестве электроизоляционных материалов для деталей, которые предназначаются для работы при частоте тока 50 Гц. Однако такие ненаполненные высокополимеры, как фторопласт и полистирол, практически не меняют своих диэлектрических качеств в зависимости от частоты тока и могут работать при высоких и сверхвысоких частотах.
Повышение температуры, как правило, ухудшает электроизоляционные характеристики пластмасс. Исключение составляет полистирол, сохраняющий электроизоляционные свойства в интервале температур от —60 до +60° С, и фторопласт 4 — в интервале температур от —60 до +200°. С.
Фрикционные свойства. В зависимости от условий работы пластмассовые детали могут обладать различными по величине фрикционными характеристиками. Так, например, текстолит при малых нагрузках имеет малый коэффициент трения, что и позволяет широко использовать его вместо бронзы, антифрикционных чугунов и т. д. Коэффициент трения тормозных материалов типа КФ-3 высок, что и отвечает назначению этих материалов. Из этих двух примеров следует, что утверждение, высказанное выше, справедливо
Просмотров: 11 818
Источник
1. Строение и структура пластических масс
Пластмассы (пластические массы) — это материал, полученный на основе высокомолекулярного органического соединения (полимера), выполняющего роль связующего и определяющего основные технические свойства материала.
Полимеры — высокомолекулярные вещества с очень большой молекулярной массой — 105…107. Основа структуры полимеров — микромолекулы, которые построены из многократно повторяющихся звеньев — мономеров.
Получение полимеров связано с образованием химически активных групп и их последующим соединением, в результате чего получаются макромолекулы. Это происходит в результате реакции полимеризации. Полимеризация — это соединение в макромолекулы одинаковых мономеров, обладающих двойной связью.
Структура макромолекул полимера может быть линейной, разветвленной и пространственной, встречаются и другие виды.
Мономеры в макромолекуле связаны между собой сильной ковалентной связью. У полимеров с линейной и разветвленной структурами связь между молекулами слабая. Поэтому при повышении температуры такие полимеры легко размягчаются, становятся пластичными. Это термопластичные полимеры — термопласты. После охлаждения термопласты вновь затвердевают, приобретая первоначальные свойства. Никаких необратимых химических превращений в процессе нагрева и охлаждения термопласты не претерпевают.
Полимеры с пространственно замкнутой (сетчатой) структурой образуются мономерами, имеющими более двух активных связей, все звенья структуры в этом случае соединены ковалентными связями. На первой стадии образования такие
полимеры получают линейную структуру. Пространственная структура образуется на второй стадии в процессе отверждения (оно происходит под воздействием температуры, давления, отвердителей) вследствие протекания необратимых химических реакций, вызывающих возникновение связей между ранее разобщенными макромолекулами (сшивание). Такие полимеры называются термореактивными, или реактопластами. В зависимости от количества связей между макромолекулами различают густосетчатые (с большим количеством связей) и редкосетчатые (с малым количеством связей) полимеры. Термопласты при нагреве сначала размягчаются, а затем образуют высоковязкие жидкости.
Пластмассы могут быть монолитными и газонаполненными (ячеистой структуры). Последние подразделяются на пено- и поропласты.
2. Классификация пластмасс
Пластмассы — это искусственные материалы, основой которых являются полимеры.
При нагреве пластмассы размягчаются, становятся пластичными. В таком состоянии им под давлением придается необходимая форма, сохраняющаяся после охлаждения. Если связующее — термопластичный полимер, переход отформованной массы в твердое состояние совершается при охлаждении. Если связующим является термореактивный полимер, то отверждение происходит при нагреве. Пластмассы по этому признаку делят на две группы: термопластичные и термореактивные.
Основа термопластичных пластмасс — полимеры с линейной или разветвленной структурой. Температура эксплуатации наиболее распространенных термопластов не превышает 60…200°С, при более высоких температурах начинается резкое снижение свойств.
Термореактивные пластмассы. Связующие вещества в этих пластмассах — термореактивные полимеры. Используются фенолформальдегидные, кремнийорганические, эпоксидные смолы. Теплостойкость этих полимеров составляет 200…350°С. В зависимости от эластичности пластмассы делят на три группы:
- жесткие (модуль упругости 700 МПа и выше);
- полужесткие (70…700 МПа);
- мягкие (до 70 МПа).
Пластмассы могут быть одноили многокомпонентными. Состав однокомпонентных представлен только одним полимером. В состав многокомпонентных пластмасс, помимо связующего, могут входить наполнители, пластификаторы, отвердители, красители.
Наполнители повышают механические свойства, снижают усадку при прессовании и придают материалу специальные свойства. По виду наполнители пластмасс делят на:
- порошковые (наполнитель — древесная мука, графит, тальк и др.);
- волокниты с наполнителем в виде волокон (очесы хлопка и льна), в том числе стеклои асбоволокниты;
- слоистые с листовым наполнителем (бумага — гетинакс, ткань хлопчатобумажная — текстолит, а также асбои стеклотекстолиты со стеклянной тканью и асбестом);
- газонаполненные — пенои поропласты (наполнитель — воздух или нейтральные газы).
Пластификаторы повышают эластичность, а также морозои огнестойкость и облегчают прессование. В качестве пластификаторов используют олеиновую кислоту, стеарин.
Отвердители — оксиды некоторых металлов, уротропин. Они способствуют отверждению термореактивных пластмасс.
Красители и пигменты придают пластмассам определенную окраску.
3. Полиэтилен, поливинилхлорид
Полиэтилен и поливинилхлорид относятся к конструкционным полимерным материалам. Это термопластичные пластмассы.
Полиэтилен (ПЭ) (-СH2—CH2-)n — плотный и прочный материал, стойкий к действию органических растворителей, хорошо окрашивается в различные цвета. Применяется, в основном, при изготовлении детской мебели, стульев, кресел различных емкостей, крепежной фурнитуры.
Производится полиэтилен высокого (ПЭВД) и низкого (ПЭНД) давления (полимеризация при давлении 100 и 0,1…0,6 МПа и температуре 200…300 и 150°С соответственно). Макромолекулы имеют линейную структуру, что обеспечивает их упаковку в пачки и таким образом облегчает кристаллизацию. Степень кристалличности ПЭНД — 75…95%, ПЭВД — 55…65%. Большая степень кристалличности ПЭНД определяет его большие прочность и теплостойкость. Среднее значение предела прочности при растяжении составляет для ПЭНД около 30МПа, для ПЭВД — 13 МПа.
ПЭ обладает довольно высокой химической стойкостью, при комнатной температуре нерастворим ни в одном известном растворителе.
ПЭ также обладает высокими диэлектрическими свойствами.
Длительное применение ПЭ ограничено температурой 60…100°С. Морозостойкость до –70°С.
Поливинилхлорид (ПВХ) (-CH2—CHCl-)n. На основе поливинилхлорида производятся два вида пластмасс — винипласт и пластикат, в состав которых, в отличие от винипласта, входят пластификаторы. Поливинилхлорид — один из наиболее распространенных синтетических материалов. Он негорюч, обладает высокой химической стойкостью, большой механической прочностью, почти не набухает, устойчив к старению, не имеет запаха, безвреден, легко окрашивается. Он наиболее дешевый и наименее дефицитный, поэтому получил широкое применение при производстве ящиков из погонажных профильных элементов, раскладок, емкостей и т.д. Винипласт имеет высокие прочность и упругость, из него изготавливают строительную облицовочную плитку, защитные покрытия металлических емкостей. Недостатки — низкая длительная прочность и малый интервал температур (от –10 до 60…70°С).
Введение пластификаторов расширяет интервал рабочих температур (от –50 до 160–195°С), повышает эластичность. Пластикат — полярный пластик, он обладает высокими диэлектрическими свойствами в области низких частот. Основное применение пластиката — изоляция проводов, кабелей.
4. Полиамиды и полистирол
Полиамиды и полистирол относятся к термопластичным пластмассам. Используются в качестве конструкционных материалов. Полиамиды — твердые термопластичные полимеры с широко известными названиями: капрон, нейлон, лавсан, в состав которых входят амидная группа (-NH-CO-), а также этиленовые группы (-CH2-), повторяющиеся от 2 до 10 раз.
Полиамиды — кристаллизующиеся полимеры. При одноосной ориентации из них получают волокна, нити, пленки. Свойства разных видов полиамидов близки, они являются хорошим антифрикционным материалом, обладают вибрационными свойствами, высокими показателями прочности при ударных нагрузках и изгибе, имеют высокую жесткость, твердость поверхности, морозостойки. Недостатки полиамидов — гигроскопичность и подверженность старению.
Применяются полиамиды в электротехнической промышленности, для изготовления фурнитуры, стяжек, полкодержателей и других мелких деталей, работающих под большими нагрузками. Их используют также для антифрикционных покрытий металлов.
Полистирол (ПС) (-CH2—CHC6H5-)n является производной этилена. Это твердый, жесткий, прозрачный материал, хорошо окрашивается.
Полистирол наиболее стоек к воздействию ионизирующего излучения по сравнению с другими термопластами. Полистирол растворим в бензоле, но стоек к кислотам, щелочам, маслам. Недостатки полистирола — низкая теплостойкость, склонность к старению и образованию трещин. Полистирол применяют при изготовлении деталей радиотехники, приборов. Ударопрочный полистирол — один из основных конструкционных материалов. Он обладает высокой твердостью, прочностью к ударным нагрузкам, эластичностью, сопротивлением на разрыв; стоек к действию температуры от +65 до –40°С. Применяется при изготовлении ящиков, погонажных элементов детской мебели, крепежной фурнитуры и др.
Модификацией полистирола являются акрилонитрилбутадиеностирольные (АСБ) пластики — сополимеры полистирола с синтетическими каучуками. Они являются ударопрочным материалом, превосходят обычный полистирол по ударной вязкости в 3–5 раз, а по относительному удлинению — в 10 раз. АСБ-пластики имеют высокую прочность, твердость, жесткость, устойчивость к истиранию, ударопрочность. Изделия из этого тройного сополимера хорошо сохраняют форму и размеры во время эксплуатации. Применяются при изготовлении каркасов кресел, стульев, детской мебели и др.
5. Фторопласты и полиметилметакрилат
К фторопластам относят полимеры, состоящие, в основном, из углерода и фтора. Это, например, фторопласт-3 и фторопласт-4, обладающие непрозрачностью и высокой химической стойкостью. Фторопласт-4 абсолютно химически стоек, имеет низкий коэффициент трения, но обладает хладотекучестью и поэтому в машиностроении применяется при незначительных нагрузках. Этот материал работает при температуре от –250 до +260°С. Он не перерабатывается обычными методами, так как не переходит в вязкотекучее состояние. Изделия из фторопласта-4 получают спеканием спрессованного порошка. Фторопласт-3 при нагреве до температуры 210°С размягчается и плавится, что дает возможность перерабатывать его методом литья под давлением. Фторопласт-3 может работать при температуре от –80 до +70°С, химически стоек, но набухает в органических растворителях; более тверд и механически прочен, чем фторопласт-4, не обладает холодной текучестью.
Фторопласты широко применяются для изготовления уплотнительных деталей — прокладок, набивок, работающих в агрессивных средах, деталей клапанов кислородных приборов, мембран, химически стойких деталей, самосмазывающихся вкладышей подшипников, реакторов, насосов, тары пищевых продуктов. Их используют в восстановительной хирургии, для защиты металла от воздействия агрессивных сред.
Полиметилметакрилат — это термопластический материал (органическое стекло), обладающий прозрачностью, твердостью, стойкостью к атмосферным воздействиям, водостойкостью, стойкостью ко многим минеральным и органическим растворителям, высокими электроизоляционными и антикоррозионными свойствами. Он выпускается в виде прозрачных листов и блоков.
К положительным свойствам органического стекла относятся:
- низкая плотность;
- упругость;
- отсутствие хрупкости вплоть до –50…60°С;
- более высокая по сравнению со стеклом светопрозрачность;
- легкая формуемость в детали сложной формы;
- простота механической обработки;
- свариваемость и склеиваемость.
Но по сравнению с минеральными стеклами органические стекла обладают более низкой поверхностной твердостью. Теплостойкость органического стекла ниже, чем у минерального. Кроме того, органическое стекло легко загорается. Органическое стекло применяется для изготовления санитарно-технического оборудования, светильников, фонарей, деталей приборов управления.
6. Поликарбонаты, пенопласт и полиимиды
Поликарбонаты — это термопластические материалы, обладающие ценными свойствами:
- высокой поверхностной твердостью;
- ударной прочностью;
- теплостойкостью.
Поликарбонаты водостойки и стойки к окислительным средам при повышенных температурах. Они совершенно прозрачны и могут быть использованы вместо силикатного стекла для изготовления фонарей, светильников, деталей приборов, посуды, тары для жидких веществ. Поликарбонаты применяют для изготовления зубчатых колес, втулок, клапанов, кулачков и других подобных деталей. Поликарбонаты перерабатывают в изделия всеми способами, применяемыми для изготовления изделий из термопластов: литьем под давлением, штамповкой, вакуум-формованием, экструзией, механической обработкой, сваркой.
Пенопласт — это полимер, отличающийся химической стойкостью и атмосферостойкостью. По водостойкости пенопласт аналогичен фторопластам, полиэтилену и полистиролу. Из пенопласта изготовляют химически стойкие трубы, клапаны, вентили, сепараторные кольца, подшипники, детали часовых механизмов, детали отделки помещений.
Полиимиды — это новый вид термопластичных пластмасс.
Его свойства:
- высокая нагревостойкость (220…250°С);
- хорошие электрические характеристики;
- большие значения механических характеристик. Полиимидные пластмассы могут использоваться при температурах до –155°С, т.е. их можно применять в холодильных установках большой мощности.
Полиимиды химически стойки. Они не растворяются в большинстве органических растворителей, на них не действуют разбавленные кислоты, минеральные масла и вода. Разрушение полиимидов вызывают концентрированные кислоты, щелочи и перегретый водяной пар. Из полиимидов получают электроизоляционные пленки светло-желтой или коричневой окраски. Полиимидные пленки выпускаются толщиной от 5 до 100 мкм и более.
На основе полиимидов изготовляют различные пластмассовые изделия электроизоляционного (изоляционные ленты, изоляционное покрытие и др.) и конструкционного назначения (прокладки, детали). Для этого используют как чистые полиимиды, так и наполненные стекловолокном и другими нагревостойкими наполнителями. Изделия из полиимидов изготовляют литьем и прессованием при температурах 356…400°С.
7. Термореактивные полимеры и пластмассы
Связующее вещество в этих пластмассах — термореактивные полимеры. Используются фенолформальдегидные, кремнийорганические, эпоксидные смолы. Теплостойкость этих полимеров 200…350°С. Термореактивные пластмассы являются многокомпонентными, в их состав входят наполнители, а также могут быть введены пластификаторы и красители.
Пластмассы с порошковым наполнителем. В качестве наполнителя используют органические и минеральные вещества. Минеральные наполнители придают материалу волокнистость, химическую стойкость, повышенные электроизоляционные свойства. Такие пластмассы изотропны, так как относятся к аморфным материалам, их механические свойства невысоки. Основное применение — несиловые детали, в основном электоизоляционного назначения.
К пластмассам с волокнистым наполнителем относятся волокниты, асбои стекловолокниты. Наполнитель волокнитов — хлопковая целлюлоза. Их применяют для изготовления деталей технического назначения — направляющих втулок, фланцев и т.д. Для асбоволокнитов (наполнитель — асбест) в качестве связующего используют, в основном, формальдегидную смолу. Их преимущество — повышенная теплостойкость. Асбест обладает высокими фрикционными свойствами, что наряду с высокой теплостойкостью обусловливает применение асбоволокнитов для изготовления деталей тормозных устройств. Стекловолокниты обладают высокой удельной прочностью, хорошо сопротивляются вибрационным и знакопеременным нагрузкам. Их свойства зависят от характеристик стекловолокна — диаметра и длины волокон, состава стекла.
Слоистые пластмассы состоят из связующего и листового наполнителя, что определяет их слоистую структуру и анизотропные свойства.
Гетинакс — это материал, наполнителем которого служат разные сорта бумаги. Его можно применять при температуре до 120…140°С, он устойчив к действию растворителей. Гетинакс применяют как материал для внутренней отделки транспортных средств.
Текстолит (наполнитель — хлопчатобумажные ткани) обладает хорошими виброгасящими и антифрикционными свойствами. Применяется в машиностроении для изготовления подшипников скольжения, корпусных деталей и т.д.
Асботекстолит содержит около 40% связующего, остальное — асбестовая ткань. Его применение определяется высокими фрикционными и теплоизолирующими свойствами.
Наполнителем стеклотекстолитов является стеклоткань. Используют их в самолетои судостроении, радиои электротехнике.
8. Газонаполненные и фольгированные пластмассы
К газонаполненным пластмассам относят легкие пластмассы— пенопласты и поропласты, которые состоят из мельчайших ячеек или пор, отделенных друг от друга тонкой пленкой полимера.
Материалы, состоящие из замкнутых, несообщающихся ячеек, называют пенопластами, а материалы, в которых преобладают сообщающиеся между собой поры, — поропластами. Когда от материала требуются высокие теплои электроизоляционные свойства и водонепроницаемость, применяют пенопласты. Для звукоизоляции используют поропласты.
Пенопласты и поропласты получают насыщением расплавленной смолы газами под давлением, при этом происходит вспенивание полимера. В пенопластах 90…95% объема занимают газы. Наибольшее применение получили пенополиуретаны, обладающие высокими диэлектрическими, тепло-, эвукои виброизоляционными свойствами, высокой удельной прочностью, большой влагостойкостью, стойкостью к кислотам и щелочам, малым коэффициентом теплопроводности, низкой плотностью (до 20 кг/м3).
Фольгированные пластмассы имеют специальное назначение: их применяют при изготовлении плат с печатным монтажом, кодовых переключателей, печатных якорей электродвигателей и других деталей. Фольгированные пластмассы представляют собой слоистый пластик (гетинакс, стеклотекстолит), облицованный с одной или двух сторон медной фольгой толщиной 35 или 50 мкм.
Медную фольгу получают электролитическим осаждением, что обеспечивает ей однородный состав. Для улучшения сцепления с пластиком одну сторону фольги обрабатывают в щелочном растворе (оксидируют). Склеивание фольги с пластиком производят клеем БФ-4 в процессе прессования.
Фольгированные пластики (табл. 1) должны удовлетворять требованиям, связанным с технологией производства печатных схем, и условиям их эксплуатации. Фольгированный пластик должен выдерживать воздействие повышенных температур в процессе производства печатных плат (взаимодействие припоя при пайке схем) и обеспечивать достаточную прочность сцепления фольги при длительной эксплуатации изделий.
Таблица 1. Фольгированные пластики
Название | Марка | Толщина, мм | Предел прочности при растяжении σв, МПа | Прочность сцепления с фольгой, Н/см | Плотность, г/см3 | Рабочие температуры, °С |
Гетинакс фольгированный | ГФ-1-П | 1,5…3,0 | 11,5 | 13,5 | 1,5…1,85 | От –60 до +100 |
Стеклотекстолит фольгированный | СФ-2 | 0,8…3,0 | 280 | 13,5 | 1,9…2,9 | От –60 до +120 |
Низкочастотный фольгированный диэлектрик | НФД-180-2 | 0,8…3 | 320 | 18,0 | 1,8…2,0 | От –60 до +180 |
Фольгированный диэлектрик для многослойных плат | ФДМ-2 | 0,25 | 180 | 12,5 | 3,5…4,0 | От –60 до +100 |
Фольгированный стеклопластик | СФЭД | 0,7…2,0 | 260 | 26 | 1,9…2,9 | От –60 до +120 |
Фольгированный асбопластик | АФЭД | 1,7…2,0 | 280 | 9,5 | 1,8…2,9 | От –60 до +180 |
Просмотров: 3 952
Источник