К каким свойствам относиться коррозионная стойкость металлов
Вопрос
Механические свойства
К основным механическим свойства относят:
– прочность
– пластичность
– твердость
Прочность – способность материала сопротивляться разрушению под действием нагрузок.
Пластичность – способность материала изменять свою форму и размеры по действием внешних сил.
Твердость – способность материала сопротивляться проникновению в него другого тела.
Физические свойства
К физическим свойства относят:
– цвет
– плотность
– температуру плавления
– теплопроводность
– электропроводность
– магнитные свойства
Цвет – способность металлов отражать излучение с определенной длиной волны. Например, медь имеет розовато-красный цвет, алюминий – серебристо-белый.
Плотность металла определяется отношением массы к единице объема. По плотности металлы делят на легкие (менее 4500 кг/м3) и тяжелые.
Температура плавления – температура, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие (вольфрам – 3416 оС, тантал – 2950 оС и др.) и легкоплавкие (олово – 232 оС, свинец – 327 оС). В единицах СИ температуру плавления выражают в градусах Кельвина (К).
Теплопроводность – способность металлов передавать тепло от более нагретых участков тела к менее нагретым. Большой теплопроводностью обладают серебро, медь, алюминий. В единицах СИ теплопроводность имеет размерность Вт/(м·К).
Способность металлов проводить электрический ток оценивают двумя противоположными характеристиками – электрической проводимостью и электрическим сопротивлением.
Электропроводность оценивается в системе СИ в сименсах (См). Электросопротивление выражают в омах (Ом). Хорошая электропроводность необходима, например, для токонесущих проводов (их изготавливают из меди, алюминия). При изготовлении электронагревательных приборов и печей необходимы сплавы с высоким электросопротивлением (из нихрома, константана, манганина). С повышением температуры металла его электропроводность уменьшается, а с понижением – увеличивается.
Магнитные свойства выражаются в способности металлов намагничиваться. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, которые называют ферромагнитными. Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов.
Химические свойства
Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, растворами щелочей и др.
К химическим свойствам относят:
– коррозионную стойкость
– жаростойкость
Коррозионная стойкость – способность металлов сопротивляться химическому разрушению под действием на их поверхность внешней агрессивной среды (коррозия происходит при вступлении в химическое взаимодействие с другими элементами).
Жаростойкость – способность металлов сопротивляться окислению при высоких температурах
Химические свойства учитывают в первую очередь для изделий или деталей, работающих в химически агрессивных средах:
– емкости для перевозки химических реактивов
– трубопроводы химических веществ
– приборы и инструменты в химической промышленности
Технологические свойства характеризуют способность материала подвергаться различным способам холодной и горячей обработки.
1. Литейные свойства — характеризуют способность материала к получению из него качественных отливок.
Жидкотекучесть – характеризует способность расплавленного металла заполнять литейную форму.
Усадка (линейная и объемная)– характеризует способность материала изменять свои линейные размеры и объем в процессе затвердевания и охлаждения. Для предупреждения линейной усадки при создании моделей используют нестандартные метры.
Ликвация – неоднородность химического состава по объему.
2. Способность материала к обработке давлением — это способность материала изменять размеры и форму под влиянием внешних нагрузок не разрушаясь.Она контролируется в результате технологических испытаний, проводимых в условиях, максимально приближенных к производственным. Листовой материал испытывают на перегиб и вытяжку сферической лунки. Проволоку испытывают на перегиб, скручивание, на навивание. Трубы испытывают на раздачу, сплющивание до определенной высоты и изгиб.Критерием годности материала является отсутствие дефектов после испытания.
3. Свариваемость — это способность материала образовывать неразъемные соединения требуемого качества. Оценивается по качеству сварного шва.
4. Способность к обработке резанием — характеризует способность материала поддаваться обработке различным режущим инструментом. Оценивается по стойкости инструмента и по качеству поверхностного слоя.
Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях.
1. Износостойкость– способность материала сопротивляться поверхностному разрушению под действием внешнего трения.
2. Коррозионная стойкость (см. Электрохимическая и химическая коррозия металлов) – способность материала сопротивляться действию агрессивных кислотных, щелочных сред.
3. Жаростойкость (см. Жаростойкость. Жаростойкая сталь. Жаростойкие сплавы.) – это способность материала сопротивляться окислению в газовой среде при высокой температуре.
4. Жаропрочность – это способность материала сохранять свои свойства при высоких температурах.
5. Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах.
6. Антифрикционность – способность материала прирабатываться к другому материалу.
Вопрос
Кристаллизация металлов и сплавов
Процесс кристаллизации.
При переходе металла из жидкого состояния в твердое образуются кристаллы. Такой процесс называют кристаллизацией.
Процесс кристаллизации металла можно рассматривать по кривым охлаждения, которые обычно получают опытным путем. Например, для чистого металла, охлаждаемого очень медленно, кривая охлаждения показывает, что, если металл находится в жидком состоянии, температура понижается почти равномерно. Если металл охладить до температуры плавления Тпл (точка а на кривой), то начинается кристаллизация ипадение температуры прекращается, несмотря на непрерывную отдачу тепла окружающей атмосфере. Получаемый горизонтальный участок на кривой охлаждения показывает, что в металле происходит процесс образования кристаллов с выделением тепла, называемый теплотой кристаллизации.Кристаллизация протекает от точки а до точки б, где она заканчивается и металл затвердевает. Дальнейшее падение температуры на кривой указывает на охлаждение затвердевшего слитка (рис. А).
В металлических сплавах кривая охлаждения имеет несколько иной вид. Охладившись до температуры плавления ТПл, сплав еще некоторое время остается жидким. Кристаллизация сплава начинается при температуре переохлаждения Тп, лежащей ниже теоретической температуры плавления. Разность между теоретической и фактической температурами кристаллизации называют степенью переохлаждения.Она зависит от природы сплава, его чистоты и скорости охлаждения. Чем больше скорость охлаждения сплава, тем больше степень переохлаждения. Петля на кривой охлаждения показывает, что кристаллизация сопровождается выделением тепла, которое повышает температуру сплава до температуры плавления, поддерживая ее до полного затвердевания металла. (рис.Б)
Аморфные тела затвердевают постепенно. В этом случае кривая охлаждениябудет плавной, без горизонтальных площадок. (рис.В)
Процесс образования кристаллов состоит из двух одновременно протекающих стадий: появления зародышей – устойчивых центров кристаллизации и роста кристалликов вокруг этих центров.
Сначала каждый кристаллик в жидкости растет свободно, сохраняя правильную геометрическую форму. Так как одновременно образуется много кристаллических центров и рост кристалликов идет по всем направлениям, то смежные кристаллы, увеличиваясь, начинают непосредственно соприкасаться друг с другом и правильная форма их нарушается. В результате кристалл приобретает округленную форму, напоминающую зерно. Такие кристаллы принято называть кристаллитами или зернами.
В зависимости от условий затвердевания зерна могут быть крупными, хорошо различимыми невооруженным глазом, и мелкими, которые можно рассмотреть только при помощи металлографического микроскопа.
Процесс кристаллизации может быть описан количественно, если известны зарождение центров кристаллизации и скорость роста кристалликов. Число центров кристаллизации и скорость роста кристалликов зависят от степени переохлаждения металла. С увеличением степени переохлаждения ∆T число центров и скорость роста также возрастают, достигая максимального значения. Однако характер роста величин числа центров и скорости роста различен.
Если степень переохлаждения невелика, то скорость роста преобладает над числом центров, в результате чего образуется крупнозернистая структура.С увеличением степени переохлаждения скорость роста не изменяется, число центров продолжает расти, что приводит к образованию мелкозернистой структуры.
Источник
Понятие «коррозионная стойкость стали» означает способность металла противостоять появлению ржавчины.
Скорость распространения коррозии зависит от многих факторов, в том числе от состава и технических характеристик стального сплава, а также качества окружающей среды.
Обычная сталь разрушается от коррозии за достаточно короткое время.
Одни из существующих методов применяют в процессе плавки. Другие используют в сборочных цехах, на конечной стадии изготовления металлоконструкций или их монтажа на строительной площадке.
Однако существуют различные способы, не только существенно повышающие коррозионную стойкость металла, но и придающие стальным конструкциям безусловную невосприимчивость к влажным и агрессивным воздействиям. Их можно разделить на две группы:
- Изменение химического состава стального сплава с введением легирующих добавок. В качестве таковых выступают элементы с положительным электрохимическим потенциалом или обладающие способностью к пассивации.
- Нанесение надежных защитных покрытий на готовые металлические изделия, конструкции, детали. Для этого используются различные способы и материалы: анодирование, пассивирование, окрашивание, эмалирование.
Легирование стали для повышения коррозионной стойкости
Металлургическая промышленность использует различные легирующие элементы, сообщающие стали коррозионную стойкость. При подборе состава особое внимание уделяется количеству углерода. Если этот показатель превышает 1,2 %, то металл существенно теряет прочностные показатели, становится менее пластичным. Сплавы с низким содержанием углерода, в химическом составе которых присутствуют хром, никель, молибден называются нержавеющими.
По требованиям ГОСТ 4553-71 в маркировке каждого типа стали четко обозначено, какие легирующие компоненты в ней присутствуют, а также их количественный показатель. Например, так:
Каждый легирующий элемент оказывает строго определенное влияние на технические характеристики стали:
- хром (Сг) повышает коррозионную стойкость, увеличивает прочностные качества, твердость;
- никель (Ni) повышает устойчивость к коррозии, улучшает пластические свойства металла;
- титан (Ti) положительно влияет на коррозионную стойкость стали, одновременно улучшая прочность, плотность и обрабатываемость металла;
- молибден (Mo) делает сталь особенно устойчивой не только к воздействию воды, но также кислот, щелочей, солевых растворов;
- вольфрам (W) делает металл более твердым и менее хрупким;
- кремний (Si) повышает коррозионную стойкость стали, делает ее магнитонепроницаемой, мало подверженной процессам окисления.
Стали, обладающие повышенной коррозионной стойкостью, носят название нержавеющих. Зависимо от процентного содержания и сочетания легирующих компонентов изменяется структура металла. В связи с этим стальной сплав может быть ферритным, мартенситным, аустенитным, ферритно-мартенситным, ферритно-аустенитным, аустенитно-мартенситным.
Критерии для классификации легированных сталей
Одни виды стальных сплавов от других различают по следующим признакам::
1. По содержанию углерода сталь бывает:
- низкоуглеродистой (менее 025% С);
- среднеуглеродистой (наличие С в диапазоне 0,25-0,65%);
- высокоуглеродистой, в которой углерода содержится свыше 0,65%.
2. По количеству легирующих элементов стальные сплавы делят на:
- низколегированные (менее 2,5%);
- среднелегированные (2,5-10%);
- высоколегированные (10-50%).
3. По предназначению отличают конструкционные и инструментальные легированные стали. Последние чаще всего применяют при изготовлении всевозможного инструментария. А вот конструкционные, в свою очередь, подразделяются на :
- машиностроительные, используемые для создания различных деталей в соответствующей отрасли;
- строительные, которые применяют во многих областях строительного производства, в том числе в мосто- и судостроении, авиационной отрасли.
Нержавеющие (легированные) стали широко используют производители крепежа и такелажной продукции. Компания «Трайв-Комплект» в своем каталоге представляет отдельный раздел, посвященный крепежным изделиям из легированных сталей.
Материалы подготовлены специалистами компании «Трайв-Комплект».
При копировании текстов и других материалов сайта – указание ссылки на сайт www.traiv-komplekt.ru обязательно!
Просмотров: 693
17.06.2020
Источник
Коррозионная стойкость — способность материалов сопротивляться коррозии, определяющаяся скоростью коррозии в данных условиях.
Для оценки скорости коррозии используются как качественные, так и количественные характеристики. Изменение внешнего вида поверхности металла, изменение его микроструктуры являются примерами качественной оценки скорости коррозии.
Для количественной оценки можно использовать:
- число коррозионных очагов, образовавшихся за определённый промежуток времени;
- время, истекшее до появления первого коррозионного очага;
- изменение массы металла на единице поверхности в единицу времени;
- уменьшение толщины материала в единицу времени;
- плотность тока, соответствующая скорости данного коррозионного процесса;
- объём газа, выделившегося (или поглощённого) в ходе коррозии единицы поверхности за единицу времени;
- изменение какого-либо свойства за определённое время коррозии (например, электросопротивления, отражательной способности материала, механических свойств)
Разные материалы имеют различную коррозионную стойкость, для повышения которой используются специальные методы. Повышение коррозионной стойкости возможно при помощи легирования (например, нержавеющие стали), нанесением защитных покрытий (хромирование, никелирование, алитирование, цинкование, окраска изделий), пассивацией и др. Устойчивость материалов к воздействию коррозии, характерной для морских условий, исследуется в камерах солевого тумана.
Наиболее лёгкой формой коррозионного воздействия является изменение цвета и потеря блеска, что в принципе мало заметно издалека. При помощи санации поверхности обычно можно вернуть стали прежний привлекательный вид.
Оспенная коррозия
Оспенная коррозия (питтинговая коррозия) — это вид коррозионного воздействия, вызываемого хлоридами.
Обычно сначала появляются маленькие точки тёмно-рыжего цвета и лишь в очень сложных случаях они могут разрастаться до такой степени, что коррозия переходит в новую стадию, сплошную поверхностную коррозию. Риск возникновения коррозии усиливается, если на поверхности после сваривания остаются инородные материалы (лак и т.п.), если на поверхность попадают частицы другого корродировавшего металла, если после термообработки не был удалён цвет побежалости.
Коррозионное растрескивание
Коррозионное растрескивание — это разрушение металла вследствие возникновения и развития трещин при одновременном воздействии растягивающих напряжений и коррозионной среды. Оно характеризуется почти полным отсутствием пластической деформации металла.
Такой вид коррозии появляется в средах с повышенным содержанием хлоридов, например, в бассейнах.
Щелевая коррозия
Щелевая коррозия — возникает в местах стыка, обусловленных конструктивными или эксплуатационными требованиями.
На степень коррозионного воздействия будет оказывать влияние геометрия стыка и тип соприкасающихся материалов. Наиболее опасны узкие стыки с малыми зазорами и соединение стали с пластиками. Если же избежать стыков не возможно, то рекомендуем использовать нержавеющие стали, легированные молибденом.
Межкристаллитная коррозия
Межкристаллитная коррозия — этот вид коррозии возникает в настоящее время на сталях после сенсибилизации в сочетании с использованием в кислых средах.
Во время сенсибилизации выделяются карбиды хрома, которые накапливаются по границам зёрен. Соответственно возникают области с пониженным содержанием хрома и более подверженные коррозии. Подобное происходит, например, во время сваривания в зоне теплового воздействия.
Все аустенитные стали обладают стойкостью к межкристаллитной коррозии. Их можно подвергать свариванию (лист до 6 мм, пруток до 40 мм) без риска возникновения МКК.
Биметаллическая или гальваническая коррозия
Биметаллическая коррозия — возникает при работе биметаллического коррозионного элемента, т.е. гальванического элемента, в котором электроды состоят из разных материалов.
Очень часто необходимо использовать неоднородные материалы, чьё сопряжение при определённых условиях может приводить к коррозии. При сопряжении двух металлов биметаллическая коррозия имеет гальваническое происхождение. При этом виде коррозии страдает менее легированный металл, который в обычных условиях, не находясь в контакте с более легированным металлом, не подвержен коррозии. Следствием биметаллической коррозии является как минимум изменение цвета и, например, потеря герметичности трубопроводов или отказ крепежа. В конечном итоге указанные проблемы могут приводить к резкому сокращению срока службы строения и необходимости преждевременного капитального ремонта. В случае с нержавеющими сталями биметаллической коррозии подвергается сопрягаемый с ними менее легированный металл.
Источник
Могвай Гизмо
Мудрец
(11249)
8 лет назад
Хорошая электропроводность
Возможность лёгкой механической обработки (однако некоторые металлы, например германий и висмут, непластичны)
Высокая плотность (обычно металлы тяжелее неметаллов)
Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
Большая теплопроводность
Максим Уколов
Знаток
(417)
8 лет назад
Свойства металлов подразделяются на физические, химические, механические и технологические.
Физические свойства металлов.
К физическим свойствам относятся плотность, плавление (температура плавления) , теплопроводность, тепловое расширение.
Плотность — количество вещества, содержащееся в единице объема.
Плавление — способность металла переходить из кристаллического (твердого) состояния в жидкое с поглощением теплоты.
Теплопроводность — способность металла с той или иной скоростью проводить теплоту при нагревании.
Электропроводность — способность металла проводить электрический ток.
Тепловое расширение — способность металла увеличивать свой объем при нагревании.
Химические свойства металлов.
Химические свойства металлов характеризуют отношение их к химическим воздействиям различных активных сред. Каждый металл обладает определенной способностью сопротивляться этим воздействиям. Основными химическими свойствами металлов являются окисляемость и коррозионная стойкость.
Окисляемость — способность металла вступать в реакцию в кислородом под воздействием окислителей.
Коррозионная стойкость —способность металла сопротивляться коррозии.
Механические свойства металлов.
К механическим свойствам металлов относят твердость, прочность, вязкость, упругость и пластичность.
Твердость — способность металла сопротивляться проникновению в него более твердого тела.
Прочность — способность металла сопротивляться разрушению под действием внешних сил.
Вязкость — способность металла сопротивляться быстро возрастающим ударным нагрузкам.
Упругость — способность металла восстанавливать свою первоначальную форму и размеры после снятия действующей нагрузки.
Пластичность — способность металла, не разрушаясь, изменять свою форму под действием нагрузки и сохранять полученную форму после снятия нагрузки.
Андрей Швец
Ученик
(170)
8 лет назад
1. Плотная кристаллическая структура.
2. Характерный металлический блеск.
3. Высокая теплопроводность и электрическая проводимость.
4. Уменьшение электрической проводимости с ростом температуры.
5. Низкие значения потенциала ионизации, т. е. способность легко
отдавать электроны.
6. Ковкость и тягучесть.
7. Способность к образованию сплавов.
Никитос и Ромэнос
Знаток
(474)
3 года назад
К физическим свойствам металлов относят их вес, теплоемкость, способность проводить электрический ток и другие подобные показатели. Всем понятно, что применение, например, чугуна невозможно в авиастроении, а любой металл, отлично проводящий электричество не применим в производстве изоляторов.
Механические свойства определяются способностью противостоять различным нагрузкам, к ним относятся твердость, пластичность, упругость и многие другие качества.
Эксплуатационные качества характеризуют возможность применения металла для эксплуатации в различных условиях — стойкость к истиранию, воздействию высоких и низких температур, и так далее.
Химические свойства металлов и сплавов определены способностью элементов, входящих в их состав, вступать в реакции с другими веществами. Так, например, всем известно, что золото не поддается воздействия кислот, чего не скажешь о других видах металла.
Технологические свойства материала определяют перечень производственных процессов, которые применимы к металлу в последующей обработке.
Мир Яр
Профи
(606)
3 года назад
Свойства металлов делятся на физические, химические, механические и технологические.
-К физическим свойствам относятся: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность, расширяемость при нагревании.
– К химическим – окисляемость, растворимость и коррозионная стойкость.
– К механическим – прочность, твердость, упругость, вязкость, пластичность.
– К технологическим – прокаливаемость, жидкотекучесть, ковкость, свариемость, обрабатываемость резанием.
Источник