Из указанных свойств какие относятся к динамическим
Аннотация: В лекции рассматриваются определение, способы объявления, инициализация динамических структур, методы доступа к данным динамических структур, размещение их в памяти, преимущества и недостатки использования динамических структур в программах.
Цель лекции: изучить понятия, классификацию, объявления и особенности доступа к данным в динамических структурах, работу с памятью при использовании структур в программе, научиться решать задачи с использованием динамических структур в языке C++.
В языке C++ имеются средства создания динамических структур данных, которые позволяют во время выполнения программы образовывать объекты, выделять для них память, освобождать память, когда в них исчезает необходимость.
Если до начала работы с данными невозможно определить, сколько памяти потребуется для их хранения, память следует распределять во время выполнения программы по мере необходимости отдельными блоками. Блоки связываются друг с другом с помощью указателей. Такой способ организации данных называется динамической структурой данных, поскольку она размещается в динамической памяти и ее размер изменяется во время выполнения программы.
Динамические структуры данных – это структуры данных, память под которые выделяется и освобождается по мере необходимости.
Динамические структуры данных в процессе существования в памяти могут изменять не только число составляющих их элементов, но и характер связей между элементами. При этом не учитывается изменение содержимого самих элементов данных. Такая особенность динамических структур, как непостоянство их размера и характера отношений между элементами, приводит к тому, что на этапе создания машинного кода программа-компилятор не может выделить для всей структуры в целом участок памяти фиксированного размера, а также не может сопоставить с отдельными компонентами структуры конкретные адреса. Для решения проблемы адресации динамических структур данных используется метод, называемый динамическим распределением памяти, то есть память под отдельные элементы выделяется в момент, когда они “начинают существовать” в процессе выполнения программы, а не во время компиляции.
Компилятор в этом случае выделяет фиксированный объем памяти для хранения адреса динамически размещаемого элемента, а не самого элемента.
Динамическая структура данных характеризуется тем что:
- она не имеет имени;
- ей выделяется память в процессе выполнения программы;
- количество элементов структуры может не фиксироваться;
- размерность структуры может меняться в процессе выполнения программы;
- в процессе выполнения программы может меняться характер взаимосвязи между элементами структуры.
Каждой динамической структуре данных сопоставляется статическая переменная типа указатель (ее значение – адрес этого объекта), посредством которой осуществляется доступ к динамической структуре.
Сами динамические величины не требуют описания в программе, поскольку во время компиляции память под них не выделяется. Во время компиляции память выделяется только под статические величины. Указатели – это статические величины, поэтому они требуют описания.
Необходимость в динамических структурах данных обычно возникает в следующих случаях.
- Используются переменные, имеющие довольно большой размер (например, массивы большой размерности), необходимые в одних частях программы и совершенно не нужные в других.
- В процессе работы программы нужен массив, список или иная структура, размер которой изменяется в широких пределах и трудно предсказуем.
- Когда размер данных, обрабатываемых в программе, превышает объем сегмента данных.
Динамические структуры, по определению, характеризуются отсутствием физической смежности элементов структуры в памяти, непостоянством и непредсказуемостью размера (числа элементов) структуры в процессе ее обработки.
Поскольку элементы динамической структуры располагаются по непредсказуемым адресам памяти, адрес элемента такой структуры не может быть вычислен из адреса начального или предыдущего элемента. Для установления связи между элементами динамической структуры используются указатели, через которые устанавливаются явные связи между элементами. Такое представление данных в памяти называется связным.
Достоинства связного представления данных – в возможности обеспечения значительной изменчивости структур:
- размер структуры ограничивается только доступным объемом машинной памяти;
- при изменении логической последовательности элементов структуры требуется не перемещение данных в памяти, а только коррекция указателей;
- большая гибкость структуры.
Вместе с тем, связное представление не лишено и недостатков, основными из которых являются следующие:
- на поля, содержащие указатели для связывания элементов друг с другом, расходуется дополнительная память;
- доступ к элементам связной структуры может быть менее эффективным по времени.
Последний недостаток является наиболее серьезным и именно им ограничивается применимость связного представления данных. Если в смежном представлении данных для вычисления адреса любого элемента нам во всех случаях достаточно было номера элемента и информации, содержащейся в дескрипторе структуры, то для связного представления адрес элемента не может быть вычислен из исходных данных. Дескриптор связной структуры содержит один или несколько указателей, позволяющих войти в структуру, далее поиск требуемого элемента выполняется следованием по цепочке указателей от элемента к элементу. Поэтому связное представление практически никогда не применяется в задачах, где логическая структура данных имеет вид вектора или массива – с доступом по номеру элемента, но часто применяется в задачах, где логическая структура требует другой исходной информации доступа (таблицы, списки, деревья и т.д.).
Порядок работы с динамическими структурами данных следующий:
- создать (отвести место в динамической памяти);
- работать при помощи указателя;
- удалить (освободить занятое структурой место).
Классификация динамических структур данных
Во многих задачах требуется использовать данные, у которых конфигурация, размеры и состав могут меняться в процессе выполнения программы. Для их представления используют динамические информационные структуры. К таким структурам относят:
- однонаправленные (односвязные) списки;
- двунаправленные (двусвязные) списки;
- циклические списки;
- стек;
- дек;
- очередь;
- бинарные деревья.
Они отличаются способом связи отдельных элементов и/или допустимыми операциями. Динамическая структура может занимать несмежные участки оперативной памяти.
Динамические структуры широко применяют и для более эффективной работы с данными, размер которых известен, особенно для решения задач сортировки.
Источник
Полные динамические характеристики нормируются либо для системных СИ, либо для измерительных преобразователей и регистрирующих приборов, если они предназначены для работы с входными сигналами с изменяющимися во времени информативными параметрами. Исключение составляют электронные осциллографы, для которых разрешается нормировать частные динамические характеристики.
Полная динамическая характеристика – характеристика, однозначно определяющая изменения выходного сигнала средства измерений при любом изменении во времени информативного или неинформативного параметра входного сигнала, влияющей величины или нагрузки.
К полным динамическим характеристикам относятся:
o передаточная функция;
o переходная характеристика;
o импульсная переходная характеристика;
o совокупность амплитудно- и фазочастотной характеристик.
Полную динамическую характеристику средства измерений (звена) дает изменение значения W (/ со) звена при изменении со, от 0 до оо. Геометрическое место конца вектора W (/ со) при изменении со от 0 до оо называется частотным годографом или комплексной частотной характеристикой динамической системы. Эту характеристику называют также амплитудно-фазовой характеристикой (АФХ) динамической системы. Номинальную полную динамическую характеристику СИ нормируют в тех случаях, когда пределы допускаемых отклонений динамической характеристики не превышают 20 % номинальной характеристики. В противном случае следует нормировать наихудшую границу возможных динамических характеристик – граничную динамическую характеристику. В этих случаях применять СИ допускается только при условии предварительного экспериментального определения действительной для данного экземпляра СИ динамической характеристики. Граничную характеристику используют в качестве критерия годности СИ.
Полную динамическую характеристику средства измерений (звена) дает изменение значения W (/ со) звена при изменении со, от 0 до оо. Геометрическое место конца вектора W (/ со) при изменении со от 0 до оо называется частотным годографом или комплексной частотной характеристикой динамической системы. Эту характеристику называют также амплитудно-фазовой характеристикой (АФХ) динамической системы. Номинальную полную динамическую характеристику СИ нормируют в тех случаях, когда пределы допускаемых отклонений динамической характеристики не превышают 20 % номинальной характеристики. В противном случае следует нормировать наихудшую границу возможных динамических характеристик – граничную динамическую характеристику. В этих случаях применять СИ допускается только при условии предварительного экспериментального определения действительной для данного экземпляра СИ динамической характеристики. Граничную характеристику используют в качестве критерия годности СИ.
В практике применения средств измерений полные динамические характеристики, к сожалению, не получили того распространения, которого они заслуживают. При разработке МВИ только такие характеристики позволяют при расчете инструментальной погрешности измерений учесть динамические свойства применяемых; средств измерений, то есть учесть динамическую погрешность. Этого достаточно для надежного описания полных динамических характеристик линейного звена, с точки зрения всех практических применений ионометрии. Они представляют собой параметры или функционалы полных динамических характеристик. Но частные динамические характеристики, как и другие традиционные характеристики средств измерений, не позволяют рассчитывать характеристики инструментальных погрешностей измерений. Частными динамическими характеристиками являются: отдельные параметры полных динамических характеристик, например постоянная времени, время запаздывания, а также характеристики, которые лишь частично характеризуют динамические свойства средств измерений, например время установления выходного сигнала.
Частичными динамическими характеристиками могут быть отдельные параметры полных динамических характеристик или характеристики, не отражающие полностью динамических свойств средств измерений, но необходимые для выполнения измерений с требуемой точностью (например, время установления показания) или контроля однородности свойств средств измерении данного типа. На эти характеристики средств измерений устанавливаются нормы с целью оценки точности измерений, сравнения средств измерений между собой и выбора из них таких, которые обеспечивают требуемую точность измерений, достижение взаимозаменяемости средств измерений.
Наибольшая информация о динамических свойствах средства измерений выражается его полной динамической характеристикой. Информация о входном сигнале заключается между следующими пределами: а) заданный своими значениями или аналитическим выражением) входной сигнал, б) сведения о входном сигнале, содержащиеся в выходном с учетом имеющейся информации о свойствах устройства. Между указанными пределами имеется множество градации, различные сочетания которых определяют матрицу задач, вообще говоря, неограниченной размерности. Если при оценке их результатов ограничиться тремя градациями: пригодны для практического использования, требуют доработки и отсутствуют, то подавляющее большинство задач следует отнести к третьей группе.
Рис. 2. Структурная схема простейшей многоканальной конструкции спектрально-селективного усреднения.
Методы химической кибернетики позволяют дать каждому из этих сооружений гораздо более полную динамическую характеристику, учитывающую неполноту перемешивания, застойные, зоны резервуара-смесителя, продольное перемешивание, стратификацию потока в перегородчатом резервуаре и тому подобные явления сопутствующие усреднительным процессам и снижающие эффективность сооружений. Но сейчас представляется наиболее важным оценить не многообразие динамических свойств конкретных сооружений, а предельные динамические возможности самих принципов усреднения, заложенных в ту и другую схему. Такбй подход позволит далее сопоставлять не конкретные сооружения, динамическая эффективность которых во многом определяется качеством конструктивных проработок, а сами направления проектирования. В следующем разделе будет проведено подробное технико-экономическое сопоставление двух направлений современного проектирования усреднителей состава. Если невозможно воспроизвести с требуемой точностью испытательный сигнал, позволяющий найти полную динамическую характеристику непосредственно из опытных данных, то допускается ее определить пересчетом другой динамической характеристики. Определение импульсной переходной характеристики датчиков является наиболее распространенным способом получения одной из полных динамических характеристик средств измерений параметров движения. Как уже отмечалось, динамические свойства любого СИ наиболее полно описываются при помощи полных динамических характеристик, определяющих закон пре образования во времени входной величины в выходную.
Рис. 3. Классификация линейных первичных измерительных преобразователей.
Частной динамической характеристикой преобразователя называется динамическая характеристика, представляющая собой параметр или функционал полной динамической характеристики. В широком классе задач динамической оптимизации региональных ТСВ посредством регулирования речного стока необходим расчет полных динамических характеристик качества воды на выходе водохранилища при интенсивных колебаниях качества воды на входе и нестационарности внутриводоемных процессов. Таким образом, при использовании существенно неидеального испытательного сигнала необходимо применять косвенный метод определения полной динамической характеристики средства измерений.
Настоятельно необходимо ввести в метрологию ИСЭ стандартные методы измерения и описания полных динамических характеристик их линейных звеньев. Вышеизложенная методика является удобной основой для подобной стандартизации. Для измерительных преобразователей и регистрирующих приборов, предназначенных для измерения мгновенных значений изменяющихся входных величин, рекомендуется нормировать одну из полных динамических характеристик. Для электронно-лучевых осциллографов допускается нормирование одной из частных динамических характеристик. Приведенные импульсная и частотные характеристики, передаточная функция, а также переходная характеристика, производная которой совпадает с импульсной, представляют собой полные динамические характеристики аналоговых средств измерений с линейной моделью.
Обработка данных решает три задачи: оценки погрешностей преобразования, коррекции преобразованного сигнала, нахождения по испытательному сигналу и отклику на него средства измерений полной динамической характеристики устройства. Кроме того, для третьей группы должны нормироваться номинальная функция преобразований fllou (x) (в СИ второй группы ее заменит шкала или другое градуированное отсчетное устройство) и полные динамические характеристики. Указанные характеристики для СИ второй группы не имеют смысла, за исключением регистрирующих приборов, для которых целесообразно нормировать полные или частные динамические характеристики. Поскольку входной сигнал близок к идеальной ступени, то выходной сигнал пропорционален (для линейного средства измерений) его переходной характеристике. Полные динамические характеристики средства измерений предполагаются известными.
Рис. 4. График зависимости погрешности результата измерения от изменяемой фазы.
Согласно ГОСТ 8.256 – 77 существует следующая классификация динамических характеристик. К полным динамическим характеристикам относятся: дифференциальное уравнение, импульсная характеристика, переходная характеристика, передаточная функция, совокупность амплитудной и фазочастотной характеристик. Для интерпретации результата измерения проводят его коррекцию. При этом необходимо знать полную динамическую характеристику ИС. Ее определение с учетом погрешностей измерения целесообразно проводить адаптивным методом, разновидность которого предложена в настоящей работе. Существуют различные подходы к решению этой задачи.
Сложнее обстоит дело с определением требуемой точности оценивания по заданным показателям достоверности контроля таких MX, которые представляют собой функции по определению. Сюда относятся, например, полные динамические характеристики средств измерений, функции влияния и другие MX второй группы. Эти характеристики для линейных СИ между собой однозначно связаны, поэтому в каждом конкретном случае необходимо нормировать ту из них, которую наиболее просто определить и контролировать. Из теории и практики динамических измерений известно, что предпочтительнее применение прямых методов определенияполных динамических характеристик. В этом случае при использовании стандартных испытательных сигналов ступенчатого, импульсного и гармонического – отклик исследуемого СИ совпадает соответственно с переходной, импульсной и частотной характеристиками, что позволяет избежать некорректности при обработке экспериментальных данных. Главный недостаток прямых методов в том, что полученные оценки характеристик могут быть представлены только в виде графика или таблицы, в то время как для теории удобно иметь эти характеристики в аналитической форме записи.
Частная динамическая характеристика не отражает полностью динамических свойств средства измерений. К частным динамическим характеристикам аналоговых средств измерений, которые можно рассматривать как линейные, относят любые функционалы или параметрыполных динамических характеристик. Примерами таких характеристик являются время реакции средства измерений, коэффициент демпфирования, значение резонансной собственной угловой частоты, значение амплитудно-частотной характеристики на резонансной частоте. Следует отметить, что в общем случае амплитудно-частотная Л (со) или фазочастотная ср (со) функции, взятые по отдельности, не позволяют рассчитать динамическую реакцию системы. Существуют, однако, так называемые минимально-фазовые системы, для которых Л (со) и ср (а) представляютполные динамические характеристики.
Источник