Ферромагнетиками какими свойствами они обладают

Ферромагнетиками какими свойствами они обладают thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 апреля 2018;
проверки требуют 8 правок.

Ферромагнетик — упорядочивание магнитных моментов.

Ферромагне́тики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое (при температуре ниже точки Кюри) способно обладать намагниченностью в отсутствии внешнего магнитного поля.

Свойства ферромагнетиков[править | править код]

  • Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы.
  • При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий.
  • Для ферромагнетиков характерно явление гистерезиса.
  • Ферромагнетики притягиваются магнитом.

Представители ферромагнетиков[править | править код]

Среди химических элементов[править | править код]

Среди химических элементов ферромагнитными свойствами обладают переходные элементы Fe, Со и Ni (3d-металлы) и редкоземельные металлы Gd, Tb, Dy, Ho, Er (см. Таблицу 1).

Таблица 1. — Ферромагнитные металлы

МеталлыTc, КJs0, Гс
Fe10431735,2
Co14031445
Ni631508,8
Gd2891980
МеталлыTc, КJs0, Гс
Tb2232713
Dy871991,8
Ho203054,6
Er19,61872,6

Js0 — величина намагниченности единицы объёма при абсолютном нуле температуры, называемая спонтанной намагниченностью. Tc — точка Кюри (критическая температура, выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком).

Для 3d-металлов и для гадолиния (Gd) характерна коллинеарная ферромагнитная атомная структура, а для остальных редкоземельных ферромагнетиков — неколлинеарная (спиральная и др.; см. Магнитная структура).

Среди соединений[править | править код]

Ферромагнитами также являются многочисленные металлические бинарные и более сложные (многокомпонентные) сплавы и соединения упомянутых металлов между собой и с другими неферромагнитными элементами, сплавы и соединения хрома (Cr) и марганца (Mn) с неферромагнитными элементами (так называемые гейслеровы сплавы), например, сплав Cu2MnAl, соединения ZrZn2 и ZrxM1−xZn2 (где М — это Ti, Y, Nb или Hf), Au4V, Sc3In и др. (Таблица 2), а также некоторые соединения металлов группы актиноидов (например, UH3).

СоединениеTc, КСоединениеTc, К
Fe3AI743TbN43
Ni3Mn773DyN26
FePd3705EuO77
MnPt3350MnB578
CrPt3580ZrZn235
ZnCMn3353Au4V42—43
AlCMn3275Sc3ln5—6

Другие известные[править | править код]

Особую группу ферромагнетиков образуют сильно разбавленные растворы замещения парамагнитных атомов (например, Fe или Со) в диамагнитной матрице Pd. В этих веществах атомные магнитные моменты распределены неупорядоченно (при наличии ферромагнитного порядка отсутствует атомный порядок). Ферромагнитный порядок обнаружен также в аморфных (метастабильных) металлических сплавах и соединениях, аморфных полупроводниках, в обычных органических и неорганических стёклах, халькогенидах (сульфидах, селенидах, теллуридах) и т. п. Число известных неметаллических ферромагнетиков пока невелико. Это, например, оксид хрома(IV) и ионные соединения типа La1−xCaxMnO3(0,4 > x > 0,2), EuO, Eu2SiO4, EuS, EuSe, EuI2, CrB3 и т. п. У большинства из них точка Кюри лежит ниже 1 К. Только у соединений Eu, халькогенидов, CrB3 значение Q составляет порядка 100 К.

См. также[править | править код]

Примечания[править | править код]

Литература[править | править код]

  • Хёрд К. М. Многообразие видов магнитного упорядочения в твёрдых телах
  • Аннаев Р. Г. Магнето-электрические явления в ферромагнитных металлах. — Ашхабад, 1951.
  • Тябликов С. В. Методы квантовой теории магнетизма. — 2-е изд. — М., 1975.
  • Невзгодова Е. — Современная экспериментальная физика. — 3-е изд. — СПб., 2009.

Источник

По магнитным свойствам все вещества делятся на: диамагнетики, парамагнетики и ферромагнетики.

Особыми магнитными свойствами обладают вещества, называемые ферромагнетиками. Ферромагнетики – вещества, которые значительно усиливают внешнее магнитное поле. Магнитная проницаемость ферромагнитных материалов может достигать значений в несколько сотен тысяч, то есть ферромагнитные материалы способны усиливать внешнее магнитное поле в сотни тысяч раз.

ФерромагнетикиФерромагнитными свойствами обладают железо, никель, кобальт и некоторые сплавы.

Природа внутриатомных магнитных полей, способных ориентироваться и упорядочиваться под действием внешнего магнитного поля, у ферромагнетиков связана не с движением электронов вокруг атомных ядер, а с внутренними магнитными полями самих электронов.

Исследование свойств элементарных частиц показало, что все частицы, обладающие электрическими зарядами, имеют и собственные магнитные поля. Заряженные частицы подобны круговым электрическим токам. Все элементарные частицы одного вида обладают совершенно одинаковыми магнитными полями. Собственное магнитное поле электрона значительно сильнее магнитного поля, создаваемого электроном при его движении вокруг ядра. По этой причине ферромагнетики, в которых внешне поле усиливается благодаря сложению собственных магнитных полей электронов, обладают значительно большей магнитной проницаемостью, чем парамагнетики. Магнитная проницаемость ферромагнетика m = В/Н непостоянна и зависит от напряженности магнитного поля

Для более глубокого понимания природы ферромагнетизма необходимо выяснить ещё один вопрос. Если ферромагнитные свойства обусловлены действием собственных магнитных полей электронов, то почему же тогда этими свойствами не обладают все вещества? Ведь электроны есть в составе всех атомов.

Большинство веществ не обладает ферромагнитными свойствами, потому что при заполнении электронных оболочек атомов электроны располагаются таким образом, что их магнитные поля направлены противоположно и компенсируют друг друга. При таком расположении электронов их потенциальная энергия взаимодействия минимальна.

Если атомы имеют нечётное число электронов на оболочках, то магнитные поля неспаренных электронов взаимно компенсируются при соединении в молекулы или при объединении атомов в кристалл.

ФерромагнетикиАтомы железа, никеля, кобальта в кристаллах располагаются таким образом, что собственные магнитные поля неспаренных электронов оказываются направленными параллельно друг другу и внутри кристалла образуются микроскопические намагниченные области – домены. В разных доменах ориентация магнитного поля различна, их суммарное магнитное поле равно нулю. При помещении во внешнее магнитное поле внутренние магнитные поля доменов ориентируются по направлению внешнего поля, ферромагнетик намагничивается.

Читайте также:  У какого элемента больше выражены металлические свойства у натрия или алюминия

Упорядоченное расположение магнитных полей электронов в доменах ферромагнетиков при достаточно высокой температуре разрушается беспорядочными тепловыми колебаниями атомов в узлах кристаллической решётки. Температура , выше которой ферромагнитное вещество теряет свои ферромагнитные свойства, называется температурой Кюри. Железо, например, перестаёт быть ферромагнетиком при температуре 770˚С, никель – при температуре 356˚.

Ферромагнитные материалы условно можно разделить на два типа: магнито-мягкие и магнито-жёсткие материалы. Магнито-мягкими называют такие ферромагнитные материалы, у которых после прекращения действия внешнего магнитного поля собственное магнитное поле почти полностью исчезает, вещество размагничивается. Из магнито-мягких материалов изготавливаются сердечники трансформаторов, электромагнитов.

Магнито-жёсткие материалы используются для изготовления постоянных магнитов, магнитных лент и дисков для магнитной записи и хранения информации.

Остались вопросы? Хотите знать больше о ферромагнетиках?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Остались вопросы?

Задайте свой вопрос и получите ответ от профессионального преподавателя.

Источник

Все диа- и парамегнетики – это вещества, намагничивающиеся весьма слабо, их магнитная проницаемость близка к единице и не зависит от напряженности магнитного поля Н. Наряду с диа- и парамагнетиками имеются вещества, способные сильно намагничиваться. Они называются ферромагнетиками.

Ферромагнетики или ферромагнитные материалы получили свое название от латинского наименования основного представителя этих веществ – железа (ferrum). К ферромагнетикам, кроме железа, относятся кобальт, никель, гадолиний, многие сплавы и химические соединения. Ферромагнетики – это вещества, способные очень сильно намагничиваться, в которых внутреннее (собственное) магнитное поле может в сотни и тысячи раз превышать вызвавшее его внешнее магнитное поле.

Свойства ферромагнетиков

1. Способность сильно намагничиваться.

Значение относительной магнитной проницаемости m в некоторых ферромагнетиках достигает величины 106 .

2. Магнитное насыщение.

На рис. 1 приведена экспериментальная зависимость намагниченности от напряженности внешнего магнитного поля . Как видно из рисунка, с некоторого значения Н численное значение намагниченности ферромагнетиков практически остается постоянным и равным Jнас. Это явление было открыто русским ученым А.Г. Столетовым и названо магнитным насыщением.

 
 

3.Нелинейные зависимости B(H) и m(H).

С ростом напряженности индукция сначала увеличивается, но по мере намагничения магнетика ее нарастание замедляется, и в сильных полях растет с увеличением по линейному закону (рис.2).

Вследствие нелинейной зависимости B(H),

т.е. магнитная проницаемость m сложным образом зависит от напряженности магнитного поля (рис.3). Вначале, с увеличением напряженности поля m возрастает от начального значения до некоторой максимальной величины, а затем уменьшается и асимптотически стремится к единице.

4. Магнитный гистерезис.

Другой отличительной особенностью ферромагнетиков является их

способность сохранять намагничение после снятия намагничивающего поля. При изменении напряженности внешнего магнитного поля от нуля в сторону положительных значений индукция возрастает (рис.4, участок

При уменьшении до нуля магнитная индукция запаздывает в уменьшении и при значении , равным нулю, оказывается равной (остаточная индукция), т.е. при снятии внешнего поля ферромагнетик остается намагниченным и представляет собой постоянный магнит. Для полного размагничивания образца необходимо приложить магнитное поле обратного направления – . Величина напряженности магнитного поля , которую надо приложить к ферромагнетику для его полного размагничивания, называется коэрцитивной силой.

Явление отставания изменения магнитной индукции в ферромагнетике от изменения напряженности переменного по величине и направлению внешнего намагничивающего поля называется магнитным гистерезисом.

При этом зависимость от будет изображаться петлеобразной кривой, носящей название петли гистерезиса, изображенной на рис.4.

В зависимости от формы петли гистерезиса различают магнитожесткие и магнитомягкие ферромагнетики. Жесткими ферромагнетиками называют вещества с большим остаточным намагничением и большой коэрцитивной силой, т.е. с широкой петлей гистерезиса (рис. 5а). Они применяются для изготовления постоянных магнитов (углеродистые, вольфрамовые, хромовые, аллюминиево-никелевые и другие стали).

Мягкими ферромагнетиками называются вещества с малой коэрцитивной силой, которые очень легко перемагничиваются, с узкой петлей гистерезиса (рис. 5б). (Чтобы получить эти свойства, специально создано так называемое трансформаторное железо, сплав железа с небольшой примесью кремния). Область их применения – изготовление сердечников трансформаторов; к ним относятся мягкое железо, сплавы железа с никелем (пермаллой, супермаллой).

5. Наличие температуры (точки) Кюри.

Точка Кюри – это характерная для данного ферромагнетика температура, при которой полностью исчезают ферромагнитные свойства.

При нагревании образца выше точки Кюри ферромагнетик превращается в обычный парамагнетик. При охлаждении ниже точки Кюри он восстанавливает свои ферромагнитные свойства. Для различных веществ эта температура различна (для Fe – 7700C, для Ni – 2600C).

6. Магнитострикция – явление деформации ферромагнетиков при намагничивании. Величина и знак магнитострикции зависят от напряженности намагничивающего поля и природы ферромагнетика. Это явление широко используют для устройства мощных излучателей ультразвука, применяемых в гидролокации, звукоподводной связи, навигации и т.д.

У ферромагнетиков наблюдается и обратное явление – изменение намагниченности при деформации. Сплавы со значительной магнитострикцией применяются в приборах, служащих для измерения давления и деформаций.

Источник

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке “Файлы работы” в формате PDF

ВВЕДЕНИЕ

Если в магнитное поле, образованное токами в проводах ввести то или иное вещество, поле изменится. Это объясняется тем, что всякое вещество является магнетиком, то есть способно под воздействием магнитного поля намагничиваться – приобретать магнитный момент М. Этот магнитный момент складывается из элементарных магнитных моментов m, связанных с отдельными частицами тела М = m. В настоящее время установлено, что молекулы многих веществ обладают собственным магнитным моментом, обусловленным внутренним движением зарядов. Каждому магнитному моменту соответствует элементарный круговой ток, создающий в окружающем пространстве магнитное поле. При отсутствии внешнего магнитного поля магнитные моменты молекул ориентированы беспорядочно, поэтому обусловленное ими результирующее магнитное поле равно нулю. Равен нулю и суммарный магнитный момент вещества. Последнее относится и к тем веществам, молекулы которых при отсутствии внешнего поля не имеют магнитных моментов. Если же вещество поместить во внешнее магнитное поле, то под действием этого поля магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении, и вещество намагничивается – его суммарный магнитный момент становится отличным от нуля. При этом магнитные поля отдельных молекул уже не компенсируют друг друга, в результате возникает поле B. Иначе происходит намагничивание веществ, молекулы которых при отсутствии внешнего поля не имеют магнитного момента. Внесение таких веществ во внешнее поле индуцирует элементарные круговые токи в молекулах, и молекулы, а вместе с ними и все вещество приобретают магнитный момент, что также приводит к возникновению поля В1. Большинство веществ при внесении в магнитное поле намагничиваются слабо. Сильными магнитными свойствами обладают только ферромагнитные вещества: железо, никель, кобальт, многие их сплавы.

Читайте также:  Какие свойства металлов лежат в основе образных литературных выражений серебряный иней

ФЕРРОМАГНЕТИКИ ЕГО СВОЙСТВА

Ферромагнетики – твердые вещества, обладающие при не слишком высоких температурах самопроизвольной намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, изменения температуры. К ним относятся: сталь, железо, никель, кобальт, их сплавы. Они имеют магнитную проницаемость, превышающую проницаемость вакуума в несколько тысяч раз. Поэтому все электротехнические устройства, использующие магнитные поля для преобразования энергии, обязательно имеют конструктивные элементы, изготовленные из ферромагнитного материала и предназначенные для проведения магнитного потока. Такие элементы называются магнитопроводы.

Магнитные свойства веществ зависят от магнитных свойств элементарных носителей магнетизма движущихся внутри атомов электронов, а также от совместного действия их групп. Электроны в атомах, двигаясь по орбитам вокруг ядра атома, образуют элементарные токи или магнитные диполи, которые характеризуются магнитным моментом m. Величина его равна произведению элементарного тока i и элементарной площадки s, ограниченной элементарным контуром m = is. Вектор m направлен перпендикулярно к площадке s по правилу буравчика. Магнитный момент тела представляет собой геометрическую сумму магнитных моментов всех диполей. Кроме орбитальных моментов, электроны, вращаясь вокруг своих осей, создают еще спиновые моменты, которые играют важнейшую роль в намагничивании ферромагнетиков.

Ферромагниты имеют следующие свойства.

1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии;

2) магнитные свойства ферромагнетиков сильно зависят от температуры, так как ориентации магнитных полей доменов препятствует тепловое движение. Для каждого ферромагнетика существует определенная температура, при котором доменная структура полностью разрушается, и ферромагнетик превращается в парамагнетик. Это значение температуры называется точкой Кюри. Так для чистого железа значение температуры Кюри приблизительно равно 900 °C;

3) ферромагнетики намагничиваются до насыщения в слабых магнитных полях. На рис. 1 показано, как изменяется модуль индукции магнитного поля B в стали с изменением внешнего поля B;

рис.1

4) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 2).

рис.2

Это объясняется тем, что вначале с увеличением B магнитная индукция B растет сильнее, а, следовательно, μ будет увеличиваться. Затем при значении магнитной индукции B наступает насыщение (μ в этот момент максимальна) и при дальнейшем увеличении B магнитная индукция B1 в веществе перестает изменяться, а магнитная проницаемость уменьшается (стремится к 1):

5) у ферромагнетиков наблюдается остаточная намагниченность. Если, например, ферромагнитный стержень поместить в соленоид, по которому проходит ток, и намагнитить до насыщения (точка А) (рис. 3), а затем уменьшать ток в соленоиде, а вместе с ним и B, то можно заметить, что индукция поля в стержне в процессе его размагничивания остается все время большей, чем в процессе намагничивания. Когда B = 0 (ток в соленоиде выключен), индукция будет равна Br (остаточная индукция). Стержень можно вынуть из соленоида и использовать как постоянный магнит. Чтобы окончательно размагнитить стержень, нужно пропустить по соленоиду ток противоположного направления, то есть приложить внешнее магнитное поле с противоположным направлением вектора индукции. Увеличивая теперь по модулю индукцию этого поля до Boc, размагничивают стержень (B = 0).

рис.3

Модуль Boc индукции магнитного поля, размагничивающего намагниченный ферромагнетик, называют коэрцитивной силой.

При дальнейшем увеличении B можно намагнитить стержень до насыщения (точка А).Уменьшая теперь B до нуля, получают опять постоянный магнит, но с индукцией –Br (противоположного направления). Чтобы вновь размагнитить стержень, нужно снова включить в соленоид ток первоначального направления, и стержень размагнитится, когда индукция B станет равной Boc. Продолжая увеличивать B, снова намагничивают стержень до насыщения (точка А).

Таким образом, при намагничивании и размагничивании ферромагнетика индукция B отстает от B. Это отставание называется явлением гистерезиса. Изображенная на рисунке 3кривая называется петлей гистерезиса.

Гистерезис – свойство систем, которые не сразу следуют за приложенными силам. Гистерезис был открыт в 1880 г. Варбургом (1846–1931). Вид кривой намагничивания (петли гистерезиса) существенно различается для различных ферромагнитных материалов, которые нашли очень широкое применение в научных и технических приложениях. Некоторые магнитные материалы имеют широкую петлю с высокими значениями остаточной намагниченности силы, они называются магнитно-жесткими и используются для изготовления постоянных магнитов. Для других ферромагнитных сплавов характерны малые значения силы, такие материалы легко намагничиваются и перемагничиваются даже в слабых полях. Такие материалы называются магнитно-мягкими и используются в различных электротехнических приборах – трансформаторах, магнитопроводах.

ОСНОВЫ ТЕОРИИ ФЕРРОМАГНЕТИЗМА

В отличие от диамагнетизма и парамагнетизма, которые являются свойствами отдельных атомов или молекул вещества, ферромагнитные свойства вещества объясняются особенностями его кристаллической структуры. Атомы железа, если взять их, например, в парообразном состоянии, сами по себе диамагнитны или лишь слабо парамагнитны. Ферромагнетизм есть свойство железа в твердом состоянии, то есть свойство кристаллов железа. Прежде всего на это указывает зависимость магнитных свойств железа и других ферромагнитных материалов от обработки, изменяющей их кристаллическое строение. Далее оказывается, что из парамагнитных и диамагнитных металлов можно изготовить сплавы, обладающие высокими ферромагнитными свойствами. Таков, например, сплав Гойслера, почти не уступающий по своим магнитным свойствам железу, хотя он состоит из таких слабомагнитных металлов, как медь (60 %), марганец (25 %) и алюминий (15 %). С другой стороны, некоторые сплавы из ферромагнитных материалов, например сплав из 75 % железа и 25 % никеля почти не магнитны. Наконец, самым веским подтверждением является то, что при достижении определенной температуры (точка Кюри) все ферромагнитные вещества теряют свои ферромагнитные свойства.

Читайте также:  Какими лечебными свойствами обладает хрен

Ферромагнитные вещества отличаются от парамагнитных не только весьма большим значением магнитной проницаемости и ее зависимостью от напряженности поля, но и весьма своеобразной связью между намагничиванием и напряженностью намагничивающего поля. Эта особенность находит свое выражение в явлении гистерезиса со всеми его следствиями: наличием остаточного намагничивания и коэрцитивной силы.

Взаимодействие магнитных моментов отдельных атомов ферромагнетика приводит к созданию чрезвычайно сильных внутренних магнитных полей, действующих в пределах каждой такой области и выстраивающих, в пределах этой области, все атомные магнитики параллельно друг другу, как показано на рис. 4. Таким образом, даже при отсутствии внешнего поля ферромагнитное вещество состоит из ряда отдельных областей, каждая из которых самопроизвольно намагничена до насыщения. Но направление намагничивания для разных областей различно, так что вследствие хаотичности распределения этих областей тело в целом оказывается в отсутствии внешнего поля не намагниченным.

рис.4 – Схема, иллюстрирующая ориентацию молекулярных магнитов в «областях самопроизвольного намагничивания» А и В.

а) Внешнее магнитное поле отсутствует;

б) под действием внешнего магнитного поля Н области А и В перестраиваются.

Под влиянием внешнего поля происходит перестройка и перегруппировка таких «областей самопроизвольного намагничивания», в результате которой получают преимущество те области, намагничивание которых параллельно внешнему полю, и вещество в целом оказывается намагниченным.

Один из примеров такой перестройки областей самопроизвольного намагничивания показан на рис.4. Здесь схематически изображены две смежные области, направления намагничивания которых перпендикулярны друг к другу.

При наложении поля Н часть атомов области В, в которой намагничивание перпендикулярно к полю, на границе её с областью А, в которой намагничивание параллельно полю, поворачивается, так что направление их магнитного момента становится параллельным полю. В результате область А, намагниченная параллельно внешнему полю, расширяется за счет тех областей, в которых направление намагничивания образует большие углы с направлением поля, и возникает преимущественное намагничивание тела по направлению внешнего поля. В очень сильных внешних полях возможны и повороты направления ориентации всех атомов в пределах целой области.

При снятии (уменьшении) внешнего поля происходит обратный процесс распада и дезориентации этих областей, то есть размагничивание тела. Ввиду больших по сравнению с атомами размеров «областей самопроизвольного намагничивания» как процесс ориентации их, так и обратный процесс дезориентации происходит с гораздо большими затруднениями, чем установление ориентации или дезориентации отдельных молекул или атомов, имеющее место в парамагнитных и диамагнитных телах. Этим и объясняется отставание намагничивания и размагничивания от изменения внешнего поля, то есть гистерезис ферромагнитных тел.

ПРИМЕНЕНИЕ ФЕРРОМАГНЕТИКОВ

Ферромагнитные материалы играют огромную роль в самых различных областях современной техники. Магнито-мягкие материалы используются в электротехнике при изготовлении трансформаторов, электромоторов, генераторов, в слаботочной технике связи и радиотехнике; магнито-жёсткие материалы применяют при изготовлении постоянных магнитов.

При выключении внешнего магнитного поля ферромагнетик остается намагниченным, то есть создает магнитное поле в окружающем пространстве.

Упорядоченная ориентация элементарных токов не исчезает привыключении внешнего магнитного поля. Благодаря этому существуют постоянные магниты. Постоянные магниты находят широкое применение в электроизмерительных приборах, громкоговорителях и телефонах, звукозаписывающих аппаратах, магнитных компасах.

Широкое распространение в радиотехнике, особенно в высокочастотной радиотехнике, получили ферриты, сочетающие ферромагнитные и полупроводниковые свойства. Из ферритов изготавливают сердечники катушек индуктивности, магнитные ленты, пленки и диски.

ЗАКЛЮЧЕНИЕ

Ферромагнетики – твердые вещества, обладающие при не слишком высоких температурах самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, изменения температуры.

Кроме высокой магнитной проницаемости ферромагнетики обладают сильно выраженной нелинейной зависимостью индукции B от напряженности магнитного поля H, а при перемагничивании связь между B и H становится неоднозначной. При перемагничивании ферромагнетика в нем происходят необратимые преобразования энергии в тепло.

При высокой температуре ферромагнитные свойства всех ферромагнитных веществ исчезают.

В отличие от диамагнетизма и парамагнетизма, которые являются свойствами отдельных атомов или молекул вещества, ферромагнитные свойства вещества объясняются особенностями его кристаллической структуры. Атомы железа, если взять их, например, в парообразном состоянии, сами по себе диамагнитны или лишь слабо парамагнитны. Ферромагнетизм есть свойство железа в твердом состоянии, т. е. свойство кристаллов железа.

Ферромагнитные материалы играют огромную роль в самых различных областях современной техники. Магнито-мягкие материалы используются в электротехнике при изготовлении трансформаторов, электромоторов, генераторов, в слаботочной технике связи и радиотехнике; магнито-жёсткие материалы применяют при изготовлении постоянных магнитов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Иродов И.Е. Электромагнетизм. Основные законы. – 3-е изд. М, Спб.: Лаборатория базовых знаний, 2000. – 352 с.

2. Ландсберг Г.С. Элементарный учебник физики: Учебное пособие. В 3-х томах. / Под редакцией Г.С. Ландсберга: Т.П. Электричество и магнетизм. – 11-е изд. – М.: Наука, Физматлит, 1995. – 480с.

3. Ферромагнетики // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%A4%D0%B5%D1%80%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B8.

4. Точка Кюри // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%A2%D0%BE%D1%87%D0%BA%D0%B0_%D0%9A%D1%8E%D1%80%D0%B8.

5. Трофимова Т.И. Курс физики: Пособие для вузов. – 7-е изд. – М.: Высш. шк., 2002. – 542 с.

6. Яворский Б.М., Детлаф А.А. Справочник по физике. – 3-е изд., испр. – М.: Наука. Гл. ред. физ.-мат. лит., 1990. – 624 с.

Источник