Для какого углеводорода особенности химических свойств

Для какого углеводорода особенности химических свойств thumbnail

Химические свойства алканов

Алканами (парафинами) называют нециклические углеводороды, в молекулах которых все атомы углерода соединены только одинарными связями. Другими словами в молекулах алканов отсутствуют кратные — двойные или тройные связи. Фактически алканы являются углеводородами, содержащими максимально возможное количество атомов водорода, в связи с чем их называют предельным (насыщенными).

Ввиду насыщенности, алканы не могут вступать в реакции присоединения.

Поскольку атомы углерода и водорода имеют довольно близкие электроотрицательности, это приводит к тому, что связи С-Н в их молекулах крайне малополярны. В связи с этим для алканов более характерны реакции протекающие по механизму радикального замещения, обозначаемого символом SR.

1. Реакции замещения

В реакциях данного типа происходит разрыв связей углерод-водород

RH + XY → RX + HY

или

C-H plus X-Y ravno C-X plus H-Y

Галогенирование

Алканы реагируют с галогенами (хлором и бромом) под действием ультрафиолетового света или при сильном нагревании. При этом образуется смесь галогенпроизводных с различной степенью замещения атомов водорода — моно-, ди- три- и т.д. галогенозамещенных алканов.

На примере метана это выглядит следующим образом:

CH4 plus Cl2 minus HCl ravno CH3Cl plus Cl2 minus HCl

Меняя соотношение галоген/метан в реакционной смеси можно добиться того, что в составе продуктов будет преобладать какое-либо конкретное галогенпроизводное метана.

Механизм реакции

Разберем механизм реакции свободнорадикального замещения на примере взаимодействия метана и хлора. Он состоит из трех стадий:

  1. инициирование (или зарождение цепи) — процесс образования свободных радикалов под действии энергии извне – облучения УФ-светом или нагревания. На этой стадии молекула хлора претерпевает гомолитический разрыв связи Cl-Cl c образованием свободных радикалов:

gomoliticheskij razryv svjazi v molekule hlora

Свободными радикалами, как можно видеть из рисунка выше, называют атомы или группы атомов с одним или несколькими неспаренными электронами (Сl•, •Н, •СН3,•СН2• и т.д.);

2. Развитие цепи

Эта стадия заключается во взаимодействии активных свободных радикалов с неактивными молекулами. При этом образуются новые радикалы. В частности, при действии радикалов хлора на молекулы алкана, образуется алкильный радикал и хлороводород.  В свою очередь, алкильный радикал, сталкиваясь с молекулами хлора, образует хлорпроизводное и новый радикал хлора:

razvitie cepi

3) Обрыв (гибель) цепи:

Происходит в результате рекомбинации двух радикалов друг с другом в неактивные молекулы:

gibel cepi

2. Реакции окисления

В обычных условиях алканы инертны по отношению к таким сильным  окислителям, как концентрированная серная и азотная кислоты,  перманганат и дихромат калия (КMnО4, К2Cr2О7).

Горение в кислороде

А) полное сгорание при избытке кислорода. Приводит к образованию углекислого газа и воды:

CH4 + 2O2 = CO2 + 2H2O

Б) неполное сгорание при недостатке кислорода:

2CH4 + 3O2 = 2CO + 4H2O

CH4 + O2 = C + 2H2O

Каталитическое окисление кислородом

В результате нагревания алканов с кислородом (~200 оС) в присутствии  катализаторов, из них может быть получено большое разнообразие органических продуктов: альдегиды, кетоны, спирты, карбоновые кислоты.

Например, метан, в зависимости природы катализатора, может быть окислен в метиловый спирт, формальдегид или муравьиную кислоту:

poluchenie iz metana kataliticheskim okisleniem metanola

3. Термические превращения алканов

Крекинг

Крекинг (от англ. to crack — рвать)  — это химический процесс протекающий при высокой температуре, в результате которого происходит разрыв углеродного скелета молекул алканов с образованием молекул алкенов и алканов с обладающих меньшими молекулярными массами по сравнению с исходными алканами. Например:

CH3-CH2-CH2-CH2-CH2-CH2-CH3  → CH3-CH2-CH2-CH3 + CH3-CH=CH2

Крекинг бывает термический и каталитический. Для осуществления  каталитического крекинга, благодаря использованию катализаторов, используют заметно меньшие температуры по сравнению с термическим крекингом.

Дегидрирование

Отщепление водорода происходит в результате разрыва связей С—Н; осуществляется в присутствии катализаторов при повышенных температурах. При дегидрировании метана образуется ацетилен:

2CH4 → C2H2 + 3H2

Нагревание метана до 1200 °С приводит к его разложению на простые вещества:

СН4 →  С + 2Н2

При дегидрировании остальных алканов образуются алкены:

C2H6 → C2H4 + H2

При дегидрировании н-бутана образуются бутен-1 и бутен-2 (последний в виде цис- и транс-изомеров):degidrirovanie butana

Дегидроциклизация

degidrociklizacija geptana

Изомеризация

izomerizacija n-butana v izo-butan na hloride aljuminija pri 100 gradusah

Химические свойства циклоалканов

Химические свойства циклоалканов с числом атомов углерода в циклах больше четырех, в целом практически идентичны свойствам алканов. Для циклопропана и циклобутана, как ни странно,  характерны реакции присоединения. Это обусловлено большим напряжением внутри цикла, которое приводит к тому, что данные циклы стремятся разорваться. Так циклопропан и циклобутан легко присоединяют бром, водород или хлороводород:addition reaction to small cycloalkanes

Химические свойства алкенов

1. Реакции присоединения

Поскольку двойная связь в молекулах алкенов состоит из одной прочной сигма- и одной слабой пи-связи, они являются довольно активными соединениями, которые легко вступаю в реакции присоединения. В такие реакции алкены часто вступают даже в мягких условиях — на холоду, в водных растворах и органических растворителях.

Гидрирование алкенов

Алкены способны присоединять водород в присутствии катализаторов (платина, палладий, никель):

CH3—СН=СН2 + Н2 → CH3—СН2—СН3

Гидрирование алкенов легко протекает даже при обычном давлении и незначительном нагревании. Интересен тот факт, что для дегидрирования алканов до алкенов могут использоваться те же катализаторы, только процесс дегидрирования протекает при более высокой температуре и меньшем давлении.

Галогенирование

Алкены легко вступаю в реакцию присоединения с бромом как в водном растворе, так и с органических растворителях. В результате взаимодействия  изначально желтые растворы брома теряют свою окраску, т.е. обесцвечиваются.

СН2=СН2+ Br2 → CH2Br-CH2Br

Гидрогалогенирование

Как нетрудно заметить, присоединение галогеноводорода к молекуле несимметричного алкена должно, теоретически, приводить к смеси двух изомеров. Например, при присоединении бромоводорода к пропену должны были бы получаться продукты:

Читайте также:  Какими свойствами обладают твердые жидкие и газообразные вещества

propen plus HBr ravno 1-bromproman ili 2-brompropan

Тем не менее в отсутствие специфических условий (например, наличие пероксидов в реакционной смеси) присоединение молекулы галогеноводорода будет происходить строго селективно в соответствии с правилом Марковникова:

Присоединении галогеноводорода к алкену происходит таким образом, что водород присоединяется к атому углерода с большим числом атомов водорода (более гидрированному), а галоген — к атому углерода с меньшим числом атомов водорода (менее гидрированному).

Поэтому:

propen plus HBr ravno 2-brompropan

Гидратация

Данная реакция приводит к образованию спиртов, и также протекает в соответствии с правилом Марковникова:

hydratation of propene

Как легко догадаться, по причине того, что присоединение воды к молекуле алкена происходит согласно правилу Марковникова, образование первичного спирта возможно только в случае гидратации этилена:

CH2=CH2 + H2O → CH3-CH2-OH

Именно по такой реакции проводят основное количество этилового спирта в крупнотоннажной промышленности.

Полимеризация

Специфическим случаем реакции присоединения можно реакцию полимеризации, которая в отличие от галогенирования, гидрогалогенирования и гадратации, протекает про свободно-радикальному механизму:

polimerizacija jetilena

Реакции окисления

Как и все остальные углеводороды, алкены легко сгорают в кислороде с образованием углекислого газа и воды. Уравнение горения алкенов в избытке кислорода имеет вид:

CnH2n + (3/2)nO2 → nCO2 + nH2O

В отличие от алканов алкены легко окисляются. При действии на алкены водного раствора KMnO4 обесцвечивание, что является качественной реакцией на двойные и тройные CC связи в молекулах органических веществ.

Окисление алкенов перманганатом калия в нейтральном или слабощелочном растворе приводит к образованию диолов (двухатомных спиртов):

3C2H4 + 2KMnO4 + 4H2O → 3CH2OH–CH2OH + 2MnO2 + 2KOH (охлаждение)

В кислой среде происходит полное разрыв двойной связи с превращение атомов углерода образовывавших двойная связь в карбоксильные группы:

5CH3CH=CHCH2CH3 + 8KMnO4 + 12H2SO4 → 5CH3COOH + 5C2H5COOH + 8MnSO4 + 4K2SO4 + 12H2O (нагревание)

В случае, если двойная С=С связь находится в конце молекулы алкена, то в качестве продукта окисления крайнего углеродного атома при двойной связи образуется углекислый газ. Связано это с тем, что промежуточный продукт окисления – муравьиная кислота легко сама окисляется в избытке окислителя:

CH3CH=CH2 + 2KMnO4 + 3H2SO4 → CH3COOH + CO2 + 2MnSO4 + K2SO4 + 4H2O (нагревание)

При окислении алкенов, в которых атом C при двойной связи содержит два углеводородных заместителя, образуется кетон. Например, при окислении 2-метилбутена-2 образуется ацетон и уксусная кислота.

Окисление алкенов, при котором происходит разрыв углеродного скелета по двойной связи используется для установления их структуры.

Химические свойства алкадиенов

Реакции присоединения

Например, присоединение галогенов:

bromirovanie butadiena

Бромная вода обесцвечивается.

В обычных условиях присоединение атомов галогена происходит по концам молекулы  бутадиена-1,3, при этом π-связи разрываются, к крайним атомам углерода присоединяются атомы брома, а свободные валентности образуют новую π-связь. Таким образом, как бы происходит «перемещение» двойной связи. При избытке брома может быть присоединена еще одна его молекула по месту образовавшейся двойной связи.

Реакции полимеризации

polimerizacija butadiena

Химические свойства алкинов

Алкины являются ненасыщенными (непредельными) углеводородами в связи с чем способны вступать в реакции присоединения. Среди реакци присоединения для алкинов наиболее распространено электрофильное присоединение.

Галогенирование

Поскольку тройная связь молекул алкинов состоит из одной более прочной сигма-связи и двух менее прочных пи-связей они способны присоединять как одну, так и две молекулы галогена. Присоединение одной молекулой алкина двух молекул галогена протекает  по электрофильному механизму последовательно в две стадии:

dve stadii bromirovanija acetilena

Гидрогалогенирование

Присоединение молекул галогеноводорода, также протекает по электрофильному механизму и в две стадии. В обоих стадиях присоединение идет в соответствии с правилом Марковникова:

dve stadii vzaimodejstvija propina s bromovodorodom 2

prichiny prisoedinenija bromovodoroda po pravilu Markova v obeih stadijah 2

Гидратация

Присоединение воды к алкинами происходит в присутсвии солей рути в кислой среде и называется реакцией Кучерова.

В результате гидратации присоединения воды к ацетилену ообразуется ацетальдегид (укусный альдегид):

6C53D6 5

Для гомологов ацетилена присоединение воды приводит к образованию кетонов:

5B7666 1

prisoedinenie vody k acetilenu i propinu cherez promezhutochnoe obrazovanie enolov

Гидрирование алкинов

Алкины реагируют с водородом в две ступени. В качестве катализаторов используют такие металлы как платина, палладий, никель:

Тримеризация алкинов

При пропускании ацетилена над активированным углем при высокой температуре из него образуется смесь различных продуктов, основным из которых является бензол – продукт тримеризации ацетилена:

trimerizacija acetilena

Димеризация алкинов

Также ацетилен вступать в реакцию димеризации. Процесс протекает в присутствии солей меди как катализаторов:

1C6CBE 4

Окисление алкинов

Алкины сгорают в кислороде:

СnH2n-2 + (3n-1)/2 O2 → nCO2 + (n-1)H2O

Взаимодействие алкинов с основаниями

Алкины с тройной C≡C на конце молекулы, в отличие от остальных алкинов, способны вступать в реакции, в которых атом водорода при тройной связи замещается металл. Например, ацетилен реагирует с амидом натрия в жидком аммиаке:

HC≡CH + 2NaNH2 → NaC≡CNa + 2NH3,

а также с аммиачным раствором оксида серебра, образуя нерастворимые солеподобные вещества называемые ацетиленидами:

propin i butin-2 pljus ammiachnyj rastvor oksida serebra

Благодаря такой реакции можно распознать алкины с концевой тройной связью, а также выделить такой алкин из смеси с другими алкинами.

Следует отметить, что все ацетилениды серебра и меди являются взрывоопасными веществами.

Ацетилениды способны реагировать с галогенпроизводными, что используется  при синтезе более сложных органических соединений с тройной связью:

СН3-C≡CН + NaNН2 → СН3-C≡CNa + NН3

СН3-C≡CNa + CH3Br → СН3-C≡C-СН3 + NaBr

Химические свойства ароматических углеводородов

Ароматический характер связи влияет на химические свойства бензолов и других ароматических углеводородов.

Единая 6пи–электронная система намного более устойчива, чем обычные пи-связи. Поэтому для ароматических углеводородов более характерны реакции замещения, а не присоединения. В реакции замещения арены вступают по электрофильному механизму.

Читайте также:  Какие из веществ обуславливают буферные свойства клетки

Реакции замещения

Галогенирование

bromirovanie benzola

Нитрование

Лучше всего реакция нитрования протекает под  действием не чистой азотной кислоты, а ее смеси с концентрированной серной кислотой, так называемой нитрующей смеси:

nitrovanie benzola

Алкилирование

Реакция при которой один из атомов водорода при ароматическом ядре замещается на углеводородный радикал:

11E9DF benzol plus ch3cl s alcl3 ravno metilbenzol 2

Также вместо галогенпроизводных алканов можно использовать алкены. В качестве катализаторов можно использовать галогениды алюминия, трехвалентного железа или неорганические кислоты.<

Реакции присоединения

Гидрирование

gidrirovanie benzola do ciklogeksana

Присоединение хлора

Протекает по радикальному механизму при интенсивном облучении ультрафиолетовым светом:

prisoedinenie hlora k benzolu

Подобным образом реакция может протекать только с хлором.

Реакции окисления

Горение

2С6Н6 + 15О2 = 12СО2 + 6Н2О+Q

Неполное окисление

Бензольное кольцо устойчиво к действию таких окислителей как KMnO4 и K2Cr2O7. Реакция не идет.

Деление заместителей в бензольном кольце на два типа:

orientirujushhee dejstvie zamestitelej pervogo i vtorogo roda 2

Рассмотрим химические свойства гомологов бензола на примере толуола.

Химические свойства толуола

Галогенирование

Молекулу толуола можно рассматривать, как состоящую из фрагментов молекул бензола и метана. Поэтому логично предположить, что химические свойства толуола должны в какой-то мере сочетать химические свойства этих двух веществ, взятых по отдельности. В частyости, именно это и наблюдается при его галогенировании. Мы уже знаем, что бензол вступает в реакцию замещения с хлором по электрофильному механизму, и для осуществления данной реакции необходимо использовать катализаторы (галогениды алюминия или трехвалентного железа). В то же время метан так же способен реагировать с хлором, но уже по свободно-радикальному механизму, для чего требуется облучение исходной реакционной смеси УФ-светом. Толуол, в зависимости от того, в каких условиях подвергается хлорированию, способен дать либо продукты замещения атомов водорода в бензольном кольце – для это нужно использовать те же условия что и при хлорировании бензола, либо продукты замещения атомов водорода в метильном радикале, если на него, как и на метан действовать хлором при облучении ультрафиолетом:

hlorirovanie tolula hv

hlorirovanie tolula v prisutstvii katalizatora

Как можно заметить хлорирование толуола в присутствии хлорида алюминия привело к двум разным продуктам – орто- и пара-хлортолуолу. Это обусловлено тем, что метильный радикал является заместителем I рода.

Если хлорирование толуола в присутсвии AlCl3 проводить в избытке хлора, возможно образование трихлорзамещенного толуола:

hlorirovanie tolula do 2,4,6-trihlortoluola

Аналогично при хлорировании толуола на свету при большем соотношении хлор/толуол можно получить дихлорметилбензол или трихлорметилбензол:

dihlormetiltoluol i trihlormetiltoluol

Нитрование

Замещение атомов водорода на нитрогрппу, при нитровании толуола смесью концентрированных азотной и серной кислот, приводит к продуктам замещения в ароматическом ядре, а не метильном радикале:

nitrovanie toluola do trotila

Алкилирование

Как уже было сказано метильный радикал, является ориентантом I рода, поэтому его алкилирование по Фриделю-Крафтсу приводит продуктам замещения в орто- и пара-положения:

alkilirovanie toluola trihlormetanom

alkilirovanie toluola jetilenom 2

Реакции присоединения

Толуол можно прогидрировать до метилциклогексана при использовании металлических катализаторов (Pt, Pd, Ni):

hydrirovanie toluola do metilciklogeksana

С6Н5СН3 + 9O2 → 7СO2 + 4Н2O

Неполное окисление

При действии такого окислителя, как водный раствор перманганата калия окислению подвергается боковая цепь. Ароматическое ядро в таких условиях окислиться не может. При этом в зависимости от pH раствора будет образовываться либо карбоновая кислота, либо ее соль:

okislenie toluola permanganatom v kisloj srede 3

okislenie toluola permanganatom v nejtral'noj srede

okislenie toluola permanganatom v shhelochnoj srede

Источник

Определение

Углеводороды (УВ) – органические соединения, состоящие из атомов углерода и водорода.

Как вы помните (см. тему “Классификация органических веществ”), все органические вещества можно подразделить на циклические и ациклические. Углеводороды являются только одним из классов органических соединений, их можно условно разделить на предельные и непредельные.

Предельные, или насыщенные  УВ, не содержат кратных связей в структуре молекул.

Непредельные или ненасыщенные УВ  содержат кратные связи – двойные или тройные.

Традиционно классификацию органических веществ проводят по строению углеводородной цепи, поэтому все УВ также подразделяются на незамкнутые (ациклические) и УВ с замкнутой цепью (карбоциклические). В свою очередь, класс ароматических УВ можно отнести и к классу непредельных соединений, так как в их структуре присутствуют кратные двойные связи. Другими словами: все ароматические соединения являются непредельными, но не все непредельные соединения – ароматические. В свою очередь, циклопарафины тоже могут быть предельными (насыщенными), а могут содержать в своей структуре кратные двойные связи и проявлять свойства ненасыщенных УВ.

Схематично эту классификацию можно отобразить следующим образом:

Для какого углеводорода особенности химических свойств

Углеводороды (УВ)Класс УВ

Общая

формула гомологического

ряда

Суффикс

в названии

Связи С-СГибридизация

Ациклические

(алифатические)

предельныеалканы$C_nH_{2n+2}$-ан…(C-C)…$sp^3$
непредельныеалкены$C_nH_{2n}$-ен…(C=C)…$sp^2$
алкины$C_nH_{2n-2}$-ин…(C $equiv$C)…$sp$
алкадиены-диен…(C=C)..(C=C)…$sp^3$/ $sp^2$ /$sp$

Карбо-

циклические

ароматическиеарены$C_nH_{2n-6}$-бензолароматическая система $C_6H_5$-$sp^2$
алициклическиециклоалканы$C_nH_{2n}$цикло-……-анзамкнутый цикл …(C=C)…$sp^3$

Ациклические соединения обычно подразделяют на предельные и непредельные (насыщенные и ненасыщенные) в зависимости от того, отсутствуют или присутствуют в их молекулах  кратные углерод-углеродные связи: 

Для какого углеводорода особенности химических свойств

Среди циклических соединений выделяют карбоциклические и гетероциклические. В молекулах карбоциклических соединений цикл образован только атомами углерода. В гетероциклах наряду с атомами углерода могут присутствовать и другие элементы, например O, N, S:

Для какого углеводорода особенности химических свойств

Карбоциклические соединения подразделяют на алициклические и ароматические. Ароматические соединения содержат в своём составе бензольное кольцо:

Для какого углеводорода особенности химических свойств

Общие химические свойства классов углеводородов

Теперь давайте дадим общую характеристику отдельным классам углеводородов и опишем их общие химические свойства. Более подробно все классы соединений будут рассматриваться в отдельных специальных темах. Начнем с предельных или насыщенных УВ. Представителями этого класса являются алканы

Определение

Алканы (парафины) – углеводороды, в молекулах которых атомы связаны одинарными связями и состав которых соответствует общей формуле $C_nH_{2n+2}$.

Читайте также:  Какие элементы присутствуют в диалоговых окнах свойств

Для какого углеводорода особенности химических свойств

Алканы называют насыщенными УВ  в соответствии с их химическими свойствами. Все связи в молекулах алканов одинарные. Перекрывание происходит по линии, соединяющей ядра атомов, то есть это$sigma$-связи,  поэтому  в жестких условиях (высокая температура, УФ-облучение) алканы могут вступать в реакции замещения, элиминирования (дегидрирования и ароматизации) и изомеризации либо в реакции расщепления, то есть разрушения углеродной цепи.

Все реакции протекают преимущественно по свободно-радикальному механизму, когда в результате реакции происходит гомолитический разрыв связей и образуются высокореакционные частицы, имеющие неспаренный электрон – свободные радикалы. Связано это с низкой поляризацией связей C-H и отсутствием участков с повышенной или пониженной электронной плотностью. Алканы не реагируют с заряженными частицами, так как связи в алканах не разрываются по гетеролитическому механизму. Алканы не могут вступать в реакции присоединения, так как из определения насыщаемости связи следует, что в молекулах с $sigma$-связями, углерод проявляет максимальную валентность, где каждая из четырех связей образована одной парой электронов. 

Циклоалканы (циклопарафины) также могут быть относены к классу предельных УВ, так как представляют собой карбоциклические соединения с одинарными $sigma$-связями.

Определение

Циклоалканы (циклопарафины) – это циклические углеводороды, не содержащие в молекуле кратных связей и соответствующие общей формуле $C_nH_{2n}$

Для какого углеводорода особенности химических свойств

 Циклоалканы также являются насыщенными углеводородами, то есть проявляют свойства, аналогичные алканам. В отличии от алканов, циклоалканы смалыми циклами (циклопропан и циклобутан) могут вступать в реакции присоединения, происходящие с разрывом связей и раскрытием цикла. Для остальных циклоалканов характерны реакции замещения, протекающие, аналогично алканам, по свободно-радикальному механизму.

К непредельным (ненасыщенным) углеводородам , согласно классификации, относятся алкены, алкадиены и алкины. Ароматические УВ также могут быть отнесены к непредельным соединениям. Свойство “непредельности” связано со способностью этих УВ вступать в реакции присоединения по кратным связям и образовывать, в конце концов, предельные УВ. Реакции присоединения включают реакции гидрирования (присоединение водорода), галогенирования (присоединение галогенов), гидрогалогенирования (присоединение галогенводородов), гидратации (присоединение воды), полимеризации. Большая часть этих реакций протекает по механизму электрофильного присоединения. 

Определение

Алкены (олефины)- ациклические углеводороды, содержащие в молекуле, помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле $C_nH_{2n}$.

Для какого углеводорода особенности химических свойств

Для алкенов, помимо указанных реакций присоединения, характерны также реакции окисления с образованием гликолей (двухатомных спиртов), кетонов или карбоновых кислот, в зависимости от длины цепи и места расположения двойной связи. Подробно особенности протекания этих реакций рассматриваются в теме “ОВР в органической химии

Определение

Алкадиены – ациклические углеводороды, содержащие в молекуле, помимо одинарных связей, две двойные связи между атомами углерода и соответствующие общей формуле $C_nH_{2n-2}$.

Расположение двойной связи в молекуле алкадиенов может быть различным:

кумулятивные диены (аллены): $-CH_2-CH=C=CH-CH2-$

изолированные диены: $-CH_2-CH=CH-CH_2-CH_2-CH=CH-CH_2-$

сопряженные диены: $-CH_2-CH=CH-CH=CH-CH_2-$

Наибольшее практическое применение имеют сопряженные алкадиены, в которых две двойные связи разделены одинарной связью, как, например, в молекуле бутадиена: $CH_2=CH-CH=CH_2$. На основе бутадиена синтезирован искусственный каучук. Поэтому основным практическим свойством алкадиенов является способность к полимеризации за счет двойных связей. Химические  свойства сопряженных алкадиенов будут подробно рассмотрены в теме: “Особенности химических свойств сопряженных диенов

Определение

Алкины – ациклические углеводороды, содержащие в структуре молекулы, помимо одинарных связей, одну тройную связь между атомами углерода, и соответствующие общей формуле $C_nH_{2n-2}$.

Для какого углеводорода особенности химических свойств

Алкины и алкадиены являются межклассовыми изомерами, так как отвечают одной общей формуле. Для алкинов, как и для всех непредельных УВ, характерны реакции присоединения. Реакции протекают по электрофильному механизму в две стадии – с образованием алкенов и их производных и далее с образованием предельных УВ. Причем первая стадия протекает медленнее второй. Особенным свойством ацетилена, первого представителя ряда алкинов, является реакция тримеризации с получением бензола (реакция Зелинского). Особенности протекания этой и других реакций будут рассмотрены в теме “Применение и получение аренов“.

Определение

Ароматические углеводороды (арены) – карбоциклические углеводороды,  в молекулах которых есть одно или несколько бензольных колец. Состав аренов с одним бензольным кольцом отвечает общей формуле $C_nH_{2n-6}$.

В основе всех ароматических соединений лежит бензольное ядро, формула которого графически изображается двумя способами:

Для какого углеводорода особенности химических свойств

Формула с делокализованными связями означает, что электронные р-орбитали атомов углерода участвуют в сопряжении и образуют единую $pi$-систему. Производные (гомологи) бензола образуются за счет замещения атомов водорода в кольце на другие атомы или группы атомов и образуют боковые цепи.

Для какого углеводорода особенности химических свойств

Поэтому для ароматических соединений ряда бензола характерны реакции по двум направлениям: по бензольному кольцу, и “в боковую цепь”. По бензольному кольцу (ядру) характерны реакции электрофильного замещения, так как наличие $pi$-системы, то есть области повышенной электронной плотности, делает структуру бензола энергетически выгодной для воздействия электрофилов (положительных ионов). В отличии от непредельных УВ, для которых характерны реакции электрофильного присоединения, ароматическая структура бензола обладает повышенной устойчивостью и нарушение ее энергетически невыгодно. Поэтому при электрофильной атаке происходит не разрыв $pi$- связей, а замещение атомов водорода. Реакции “в боковую цепь” зависят от характера радикала-заместителя и могут протекать по разным механизмам.

Ароматические соединения. имеющие в своей структуре несколько (два и более) конденсированных бензольных колец называются полиядерными ароматическими УВ и имеют свои тривиальные названия. 

Для какого углеводорода особенности химических свойств

Источник