Диоксид титана пищевая добавка
Диоксид титана (Е171) – пищевая добавка, имеющая хорошие отбеливающие свойства, поэтому широко используется во многих сферах (производство, косметология, пищевая отрасль). Можно встретить и другие наименования Е171: титановый диоксид, Titanium Dioxide, титана диоксид и titanium oxide.
Описание добавки
Химический состав Е171: двуокись титана (отвечает за отбеливание) и титановые белила. Во время нагревания вещество окрашивается в бледно желтый цвет. Это инертное вещество, которое не растворяется в воде, подсолнечном и оливковом маслах, спирте.
В природе титановый диоксид содержится в некоторых минералах, например, бруките, рутиле и анатазе. Краситель представляет собой беленький порошок без отличительного вкуса и аромата. Характеризуется длительной устойчивостью к воздействию солнечных лучей, кислотной среде, щелочей и температурных колебаний.
Белые кристаллы в дробном виде используются в промышленных отраслях. Их получают двумя самыми распространенными способами. Первый – сульфатный из ильментированого концентрата, второй – хлоридный из титанового тетрахлорида.
Главные свойства диоксида титана: он вовсе не токсичен, имеет химическую стойкость, не меняет запах (только меняется оттенок во время нагревания), отличается высокой влагостойкостью, полностью совместим с абсолютно любыми пленочными изделиями, имеет высокую отбеливающую и в тот же момент красящую способность.
Titanium oxide в косметологии
Е171 используется в производстве различных кремов для равномерного и качественного загара, в мазях от аллергических реакций. Он признан одним из лучших веществ, которые защищают кожный покров от ультрафиолетовых лучей, вызывающих меланому кожи.
Титановый диоксид можно найти в косметике и косметических средствах, таких как пудра, губная помада, тени для век, антиперспиранты, мыло и зубная паста. Любители натуральных косметических средств готовят мыло самостоятельно и отбирают нужные и качественные компоненты. В мыле обязательным компонентом является Е171, который не только придает нужный оттенок, но и защищает его от солнечных лучей. С помощью добавки получается качественный косметический материал, в том числе титановый слюд (насыщенный перламутр).
Титана диоксид в пищевом производстве
Применение и широкое использование Titanium Dioxide в пищевой сфере началось с 1994 года, в первую очередь как природного красителя, благодаря которому получается неимоверный эффект отбеливания. В еде Е171 считается безопасной, но исследования и тесты идут полным ходом, чтобы определить влияние добавки на организм человека.
Краситель – это незаменимый компонент в производстве сухих смесей, молочных продуктов и завтраков быстрого приготовления. В качестве натурального отбеливателя используется для массового изготовления жвачек. При помощи титанового диоксида осуществляется отбеливание крабовых палочек (их белых частей) и прочих морепродуктов.
Пищевая сфера нуждается в Е171, потому что краситель диоксид титана есть первоочередной составляющей для создания печенья, булочек, конфет и иных продуктов. Суточная норма для человека данной пищевой добавки не должна быть более 1 процента.
Титановый диоксид в медицине
Фармацевтическая отрасль тоже не осталась в стороне, поскольку Е171 является одним из компонентов многих лекарственных средств. Он предназначен для того, чтобы:
- придать таблеткам или капсулам беловатый цвет;
- сделать их более презентабельными;
- продлить срок годности лекарства.
Белый диоксид титана широко используется в медицинской отрасли в производстве таблетированных препаратов и витаминных комплексов. Добавление порошка в основы кремов, суппозитории, пасты и иные фармакологические лекарственные средства, стало привычным делом.
Титановый диоксид в других сферах
Также titanium oxide можно встретить в производстве лакокрасочных изделий (например, ламинированной бумаги и пластмассы). Вещество обладает огнеупорными способностями, поэтому необходимо для изготовления оптических стекол. Также известно его использование для создания белил для обмазки сварочных электродов. Благодаря данной добавке повышается стойкость к выцветанию и старению топографической краски, улучшается структурные особенности бумажной пульпы в картонно-бумажной индустрии.
Страна | Максимальная годовая производительная мощность |
---|---|
Америка | 300 |
Канада | 20 |
Германия | 140 |
Великобритания | 150 |
Франция | 105 |
Финляндия | 120 |
Двуокись титана применяется в виде микрочастиц в сфере нанотехнологий, но это пока еще новое направление в применении Е171. Поэтому мировой объем потребления микрочастиц равен приблизительно двум тысячам тонн в год. Спрос на титановый диоксид объясняется тем, что произошел за последние несколько лет рост производства товаров широкого потребления и иных отраслей экономики государств. В развитых странах потребление добавки должно составлять 2 кг на одного человека, но этого добиться довольно сложно, например, в России этот показатель равен только 300 граммам. Стремительно увеличивается емкость рынков сбыта и потребления, а это говорит о том, что данная пищевая добавка на мировом рынке имеет неплохие перспективы.
Для масштабного производства керамики, стекла и резины титановую двуокись используют как катализатор химических реакций, благодаря этому можно пользоваться готовой продукцией при повышенных температурах. Благоприятно воздействует титановый диоксид на древесину, он защищает ее от радиации солнечных лучей.
Как влияет Е171 на здоровье?
Влияние на организм человека пищевой добавки исследуется до нынешних дней. Она разрешена во многих государствах: Российской Федерации, Беларуси, Европейском Союзе, Америке, Канаде и других. Данный краситель состоит в Кодексе Алиментариус (своде пищевых международных стандартов) как ценная пищевая добавка.
По результатам многих исследований было выяснено, что вещество не причиняет вред человеку, но правда ли это? Добавка не усваивается и не накапливается организмом, спустя несколько часов выводится из него. Были проведены тесты, которые говорят о том, что титановый диоксид при употреблении способен разрушать клетки организма. Но пока это мнение не подтверждено учеными.
Не рекомендуется употреблять пищевую добавку людям, у которых слабая иммунная система, заболевания почек и печени. При вдыхании белого порошка увеличивается вероятность появления рака. Это подтверждают эксперименты, проведенные на крысах. Грызунам в еду подсыпали краситель, спустя пять дней, было проверено самочувствие и общее состояние крыс. За этих 5 дней у грызунов деформировались хромосомы, была нарушена цепочка ДНК. Обмен веществ у крыс протекает в несколько раз быстрее, нежели у человека, поэтому при тестировании организма человека после употребления Е171 результаты могут значительно отличаться.
Считалось, что Е171 безвредное вещество, которое не вызывает химических реакций в живых организмах, но это не так. Добавка оказывает сильнейшее механическое воздействие на живые клетки и может полностью разрушить их природное строение. Есть большая вероятность, что пыль диоксида титана имеет канцерогенные особенности и может негативно повлиять на самочувствие человека.
Несмотря на длительные исследования и эксперименты, краситель Е171 используется в качестве пищевой добавки и считается безопасным, при условии, если его будут добавлять в пищу в минимальных дозировках.
Диоксид титана, где бы ни использовался, он является незаменимой и натуральной добавкой. В первую очередь это связано с его технологическими особенностями: он предотвращает, полностью устраняет нежелательное окрашивание продуктов питания, известен как краситель для продуктов и смесей, придает привлекательный внешний вид готовым изделиям. Самое главное, что эта добавка получена из природных экологически чистых источников. Специалисты утверждают, что только в случае передозировки могут возникнуть побочные эффекты, поэтому добавка разрешена во многих государствах, так как ее вредные стороны не оказывают какого-либо значительного риска для здоровья людей.
Больше свежей и актуальной информации о здоровье на нашем канале в Telegram. Подписывайтесь: https://t.me/foodandhealthru
Источник
Есть случаи, когда ранее считавшиеся безвредными добавки оказываются опасными. Например, добавка Е171 (диоксид титана). Применяли её испокон веков, считая абсолютно безопасной. В руководствах про её токсичность так и писали: «Из-за своей нерастворимости диоксид титана почти не всасывается и выводится из организма». А если он весь выводится, то какой от него вред.
Тайное станет явным
Но в последние годы выяснилось, что диоксид титана, наоборот, накапливается в организме в виде наночастиц и приносит существенный вред.
«Диоксид титана – это такое вещество, при производстве которого всегда образуется некоторое количество наночастиц, – объясняет кандидат физ.-мат. наук, сотрудник ФГУП Всероссийского института авиационных материалов Станислав Кондрашов. – Их может быть больше или меньше, от них можно совсем избавиться, но это требует усилий».
Встретиться с такими наночастицами можно в массе продуктов – конфетах (особенно драже), жевательной резинке, молочных продуктах, газировках, в том числе в сухих смесях для их приготовления, в майонезе, переработанном мясе, быстрых завтраках и, по сути, во многих продуктах белого цвета. Так, в крабовых палочках китайские учёные нашли большое количество наночастиц. По злой иронии судьбы, дети получают опасных частиц особенно много – в составе всяких драже, жевательной резинки и газировок. Итальянские учёные показали в исследованиях, что детям достаётся наночастиц больше, чем подросткам или взрослым.
«Кроме продуктов диоксид титана ещё применяют в качестве отбеливателя в зубных пастах, в оболочках таблеток и капсулах с лекарством, в солнцезащитной косметике и некоторых средствах гигиены. В исследованиях установлено, что наночастицы этого вещества усваиваются организмом через кожу, лёгкие и частично через пищеварительный тракт, – рассказывает известный биогеронтолог, профессор, член-корреспондент РАН Алексей Москалёв. – В эксперименте на мышах показана потенциальная небезопасность наночастиц диоксида титана для печени, почек и мозга, селезёнки, сердца и лёгких. При инъекции этого вещества частицы проникали во все эти органы, накапливались в них и вызывали негативные эффекты, в частности, выделение свободных радикалов и развитие воспаления. Кроме того, наночастицы диоксида титана нарушают состав кишечной микрофлоры. Также недавно опубликовано пилотное (предварительное) исследование на пациентах, которое свидетельствует о возможном повышенном риске сахарного диабета 2-го типа при систематическом использовании отбеливающих зубных паст. Международное агентство по исследованию рака рассматривает наночастицы диоксида титана как возможные канцерогены для человека, а Национальный институт безопасности и гигиены труда США (всё это головные организации в сфере онкологии) классифицирует их как канцерогенные вещества. Официально даже рекомендуется избегать солнцезащитных спреев и порошков с этими наночастицами, поскольку их легко случайно вдохнуть, а они усваиваются через лёгкие.
Кроме того, наночастицы диоксида титана нарушают проницаемость слизистой кишечника, в результате через неё могут проникать в кровь токсичные вещества и возбудители инфекций, для которых она в норме непроницаема. Подобным же образом в экспериментах у животных нарушался так называемый гемато-энцефалический барьер, защищающий мозг от проникновения из крови вредных веществ, вирусов и других микроорганизмов. Увеличение проницаемости этих двух барьеров является, на мой взгляд, ключевым механизмом старения организма и центральной нервной системы».
Поверх барьеров
Проникают они и через плацентарный барьер между матерью и плодом, нанося вред будущему ребёнку. В эксперименте на мышах показано, как наночастицы накапливались в клетках слизистой кишечника, сначала вызывая воспаление, а потом превращаясь в предраковые клетки. Важно, что это происходит при потреблении не «лошадиных доз», а сопоставимых с теми, что мы получаем с добавкой Е171. Наши учёные из НИИ биологии и биофизики в Томске на мышах убедительно показали, как наночастицы диоксида титана попадают в мозг и разрушают его.
Проблему Е171 надо решать. Где-то от добавки стоит отказаться – можно пожертвовать белоснежным цветом продукта, чтобы избежать вреда. В других случаях можно использовать диоксид титана, очищенный от наночастиц. Пойдут ли на это химические компании, производящие добавку? Это вопрос не совести, а денег. Но разве здоровье не дороже бизнеса?
Смотрите также:
- Макси опасность нано частиц. Французы запрещают пищевую добавку E171 →
- Молоко молоку рознь. Корректен ли термин «непереносимость лактозы»? →
- Вредные нитраты на самом деле… полезны? →
Источник
Оксид титана(IV) (диоксид титана, двуокись титана, титановые белила, пищевой краситель E171) TiO2 — амфотерный оксид четырёхвалентного титана. Является основным продуктом титановой индустрии (на производство чистого титана идёт лишь около 5 % титановой руды)[2].
Строение[править | править код]
Обработанное электронное изображение нанотрубок диоксида титана, полученных анодированием металлического титана. Диаметр трубки 70 нм, длина 1000 нм
Диоксид титана в рутильной форме
Серым цветом обозначены атомы титана, красным — кислорода
Оксид титана существует в виде нескольких модификаций. В природе встречаются кристаллы с тетрагональной сингонией (анатаз, рутил) и ромбической сингонией (брукит). Искусственно получены ещё две модификации высокого давления — ромбическая IV и гексагональная V.
Модификация/Параметр | Рутил | Анатаз | Брукит | Ромбическая IV | Гексагональная V | |
---|---|---|---|---|---|---|
Параметры элементарной решётки, нм | a | 0,45929 | 0,3785 | 0,51447 | 0,4531 | 0,922 |
b | — | — | 0,9184 | 0,5498 | — | |
c | 0,29591 | 0,9486 | 0,5145 | 0,4900 | 0,5685 | |
Число формульных единиц в ячейке | 2 | 4 | 8 | |||
Пространственная группа | P4/mnm | I4/amd | Pbca | Pbcn |
При нагревании и анатаз, и брукит необратимо превращаются в рутил (температуры перехода соответственно 400—1000 °C и около 750 °C). Основой структур этих модификаций являются октаэдры TiO6, то есть каждый ион Ti4+ окружён шестью ионами O2−, а каждый ион O2− окружён тремя ионами Ti4+.
Октаэдры расположены таким образом, что каждый ион кислорода принадлежит трём октаэдрам. В анатазе на один октаэдр приходятся 4 общих ребра, в рутиле — 2.
Нахождение в природе[править | править код]
В чистом виде в природе встречается в виде минералов рутила, анатаза и брукита (по строению первые два имеют тетрагональную, а последний — ромбическую сингонию), причём основную часть составляет рутил.
Третье в мире по запасам рутила месторождение находится в Рассказовском районе Тамбовской области. Крупные месторождения находятся также в Чили (Cerro Bianco), канадской провинции Квебек, Сьерра-Леоне.
Свойства[править | править код]
Физические, термодинамические свойства[править | править код]
Чистый диоксид титана — бесцветные кристаллы (желтеют при нагревании). Для технических целей применяется в раздробленном состоянии, представляя собой белый порошок. Не растворяется в воде и разбавленных минеральных кислотах (за исключением плавиковой).
- Температура плавления для рутила — 1870 °C (по другим данным — 1850 °C, 1855 °C)
- Температура кипения для рутила — 2500 °C.
- Плотность при 20 °C:
для рутила 4,235 г/см³[3]
для анатаза 4,05 г/см³[3] (3,95 г/см³[4])
для брукита 4,1 г/см³[3]
- Температура разложения для рутила 2900 °C[4]
Температура плавления, кипения и разложения для других модификаций не указана, так как они переходят в рутильную форму при нагревании (см. выше).
Модификация | Интервал температуры, K | |||||
---|---|---|---|---|---|---|
298—500 | 298—600 | 298—700 | 298—800 | 298—900 | 298—1000 | |
рутил | 60,71 | 62,39 | 63,76 | 64,92 | 65,95 | 66,89 |
анатаз | 63,21 | 65,18 | 66,59 | 67,64 | 68,47 | 69,12 |
Модификация | ΔH°f, 298, кДж/моль[7] | S°298, Дж/моль/K[8] | ΔG°f, 298, кДж/моль[9] | C°p, 298, Дж/моль/K[10] | ΔHпл., кДж/моль[11] |
---|---|---|---|---|---|
рутил | -944,75 (-943,9[4]) | 50,33 | -889,49 (-888,6[4]) | 55,04 (55,02[4]) | 67 |
анатаз | -933,03 (938,6[4]) | 49,92 | -877,65 (-888,3[4]) | 55,21 (55,48[4]) | 58 |
Вследствие более плотной упаковки ионов в кристалле рутила увеличивается их взаимное притяжение, снижается фотохимическая активность, увеличиваются твёрдость (абразивность), показатель преломления (2,55 — у анатаза и 2,7 — у рутила), диэлектрическая постоянная.
Химические свойства[править | править код]
Диоксид титана амфотерен, то есть проявляет как осно́вные, так и кислотные свойства (хотя реагирует главным образом с концентрированными кислотами).
Медленно растворяется в концентрированной серной кислоте, образуя соответствующие соли четырёхвалентного титана:
При сплавлении с оксидами, гидроксидами, карбонатами образуются титанаты — соли титановой кислоты (амфотерного гидроксида титана TiO(OH)2)
C пероксидом водорода даёт ортотитановую кислоту:
При нагревании с аммиаком даёт нитрид титана:
При нагревании восстанавливается углеродом и активными металлами (Mg, Ca, Na) до низших оксидов.
При нагревании с хлором в присутствии восстановителей (углерода) образует тетрахлорид титана.
Нагревание до 2200 °C приводит сначала к отщеплению кислорода с образованием синего Ti3O5 (то есть TiO2Ti2O3), а затем и тёмно-фиолетового Ti2O3.
Гидратированный диоксид TiO2nH2O [гидроксид титана(IV), оксо-гидрат титана, оксогидроксид титана] в зависимости от условий получения может содержать переменные количества связанных с Ti групп ОН, структурную воду, кислотные остатки и адсорбированные катионы. Полученный на холоде свежеосажденный TiO2nH2O хорошо растворяется в разбавленных минеральных и сильных органических кислотах, но почти не растворяется в растворах щелочей. Легко пептизируется с образованием устойчивых коллоидных растворов.
При высушивании на воздухе образует объёмистый белый порошок плотностью 2,6 г/см³, приближающийся по составу к формуле TiO22H2O (ортотитановая кислота). При нагревании и длительной сушке в вакууме постепенно обезвоживается, приближаясь по составу к формуле TiO2H2O (метатитановая кислота). Осадки такого состава получаются при осаждении из горячих растворов, при взаимодействии металлического титана с HNO3 и т. п. Их плотность ~ 3,2 г/см³ и выше. Они практически не растворяются в разбавленных кислотах, не способны пептизироваться.
При старении осадки TiO2nH2O постепенно превращается в безводный диоксид, удерживающий в связанном состоянии адсорбированные катионы и анионы. Старение ускоряется кипячением суспензии с водой. Структура образующегося при старении TiO2 определяется условиями осаждения. При осаждении аммиаком из солянокислых растворов при рН < 2 получаются образцы со структурой рутила, при рН 2—5 — со структурой анатаза, из щелочной среды — рентгеноаморфные. Из сульфатных растворов продукты со структурой рутила не образуются.
Кроме того, под воздействием ультрафиолетовых лучей способен разлагать воду и органические соединения.
Токсические свойства, физиологическое действие, опасные свойства[править | править код]
Регистрационный номер ООН — UN2546
При вдыхании[править | править код]
TLV (предельная допустимая концентрация): как TWA (средневзвешенная во времени концентрация, США) — 10 мг/м³ A4 (ACGIH 2001).
ПДК в воздухе рабочей зоны — 10 мг/м³ (1998)
IARC (МАИР) относит оксид титана к группе 2B[en] (потенциально канцерогенный) в случае вдыхания наночастиц[12].
В качестве пищевой добавки E171[править | править код]
Оценки безопасности пищевой добавки E171 (Оксид титана) со стороны EFSA: разрешен к пищевому применению директивой 94/36/EEC (в отдельных формах)[13], ADI не установлен, MoS 2250 мг/кг[14].
В конце 2010-х появилось несколько публикаций INRA об исследовании оксида титана на мышах или на малом числе пациентов. Агентство EFSA направило авторам статей ряд вопросов[15] и не нашло причин для переоценки рисков на основании данных публикаций, остается в силе мнение 2016 года[16][17].
C 2020 года запрещена во Франции[18].
В США по данным FDA допускается использование красителя – пищевой добавки E171 (Оксид титана) в пищевых продуктах (на уровне не более 1% по массе), в косметике, в составе лекарственных препаратов[19], что подтверждается CFR Title 21 (Food and Drugs) Chapter I Subchapter A Part 73 (LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION) – §73.575 Titanium dioxide.[20]
По данным Роспотребнадзора пищевая добавка E171 разрешена для применения на территории России[21]
Добыча и производство[править | править код]
Мировое производство диоксида титана на конец 2004 года достигло приблизительно 5 миллионов тонн[22].
Основные производители и экспортёры диоксида титана:
- Sachtleben Chemie[de] (Пори, Финляндия, Дуйсбург и Крефельд, Германия)
- «Крымский Титан» (Армянск, север Крыма)
- «Сумыхимпром» (Сумы, Украина)
- KRONOS Titan[de] (Норденхам, Германия)
- Tronox[en] (Оклахома-Сити, США)
- DuPont (Де-Лайл[en], штат Миссисипи, Нью-Джонсонвилл[en], штат Теннесси, Эджмур[en], штат Делавэр, США; Альтамира, Мексика; Гуаньинь[en], Тайвань; Убераба, Бразилия)
В последние годы чрезвычайно быстро растет производство диоксида титана в Китае.
Сумской государственный институт минеральных удобрений и пигментов (МИНДИП) в своих научно-исследовательских работах особое место уделяет технологиям получения оксида титана (IV) сульфатным способом: исследование, разработка новых марок, модернизация технологии и аппаратурного оформления процесса.
Существуют два основных промышленных метода получения TiO2: из ильменитового (FeTiO3) концентрата и из тетрахлорида титана. Поскольку запасов ильменита для удовлетворения нужд промышленности явно недостаточно, значительная часть TiO2 производится именно из тетрахлорида титана.
Производство диоксида титана из ильменитового концентрата[править | править код]
Первый завод по производству титановых белил из природного титанового минерала ильменита FeTiO3 был построен в Норвегии в 1918 г., однако первые промышленные партии белил имели жёлтый цвет и плохо подходили для живописи, так что фактически белые титановые белила стали использоваться художниками лишь в 1922—1925 гг. При этом следует указать, что до 1925 г. были доступны лишь композитные титановые пигменты на базе барита или кальцита.
До 1940-х гг. двуокись титана выпускалась в кристаллической модификации — анатаз (β-TiO2) тетрогональной сингонии с показателем преломления ~2,5
Технология производства состоит из трёх этапов:
- получение растворов сульфата титана (путём обработки ильменитовых концентратов серной кислотой). В результате получают смесь сульфата титана и сульфатов железа (II) и (III), последний восстанавливают металлическим железом до степени окисления железа +2. После восстановления на барабанных вакуум-фильтрах отделяют растворов сульфтов от шлама. Сульфат железа(II) отделяют в вакуум-кристаллизаторе.
- гидролиз раствора сульфатных солей титана. Гидролиз проводят методом введения зародышей (их готовят осаждая Ti(OH)4 из растворов сульфата титана гидроксидом натрия). На этапе гидролиза образующиеся частицы гидролизата (гидратов диоксида титана) обладают высокой адсорбционной способностью, особенно по отношению к солям Fe3+, именно по этой причине на предыдущей стадии трёхвалентное железо восстанавливается до двухвалентного. Варьируя условия проведения гидролиза (концентрацию, длительность стадий, количество зародышей, кислотность и т. п.) можно добиться выхода частиц гидролизата с заданными свойствами, в зависимости от предполагаемого применения.
- термообработка гидратов диоксида титана. На этом этапе, варьируя температуру сушки и используя добавки (такие, как оксид цинка, хлорид титана и используя другие методы можно провести рутилизацию (то есть перестройку оксида титана в рутильную модификацию). Для термообработки используют вращающиеся барабанные печи длиной 40—60 м. При термообработке испаряется вода (гидроксид титана и гидраты оксида титана переходят в форму диоксида титана), а также диоксид серы.
Производство диоксида титана из тетрахлорида титана[править | править код]
В 1938—1939 гг. способ производства изменился — появился так называемый хлорный метод производства белил из тетрахлорида титана, благодаря чему титановые белила стали выпускаться в кристаллической модификации рутил (α-TiO2) — также тетрагональной сингонии, но с другими параметрами решётки и несколько бо́льшим по сравнению с анатазом показателем преломления 2,61.
Существуют три основных метода получения диоксида титана из его тетрахлорида:
- гидролиз водных растворов тетрахлорида титана (с последующей термообработкой осадка)
- парофазный гидролиз тетрахлорида титана (основан на взаимодействии паров тетрахлорида титана с парами воды)при 400 °C.
- термообработка тетрахлорида (сжигание в токе кислорода)Процесс обычно ведётся при температуре 900—1000 °C
Применение[править | править код]
Основные применения диоксида титана:
- производство лакокрасочных материалов, в частности, титановых белил — 57 % от всего потребления[22] (диоксид титана рутильной модификации обладает более высокими пигментными свойствами — светостойкостью, разбеливающей способностью и др.)
- производство пластмасс — 21 %[22]
- производство ламинированной бумаги — 14 %[22]
- производство декоративной косметики
- производство огнеупорной бумаги[23]
- фотокаталитические бетоны
2001 г. | 2002 г. | 2003 г. | 2004 г. | |
---|---|---|---|---|
Америка | 1730 | 1730 | 1730 | 1680 |
Запад. Европа | 1440 | 1470 | 1480 | 1480 |
Япония | 340 | 340 | 320 | 320 |
Австралия | 180 | 200 | 200 | 200 |
Прочие страны | 690 | 740 | 1200 | 1400 |
Всего | 4380 | 4480 | 4930 | 5080 |
Другие применения — в производстве резиновых изделий, стекольном производстве (термостойкое и оптическое стекло), как огнеупор (обмазка сварочных электродов и покрытий литейных форм), в косметических средствах (мыло и т. д.), в фармакологической промышленности в качестве пигмента и наполнителя некоторых лекарственных форм (таблетки и т.д.), в пищевой промышленности (пищевая добавка E171). Используется в процессах очистки воздуха методом фотокатализа.
Ведутся исследования по использованию диоксида титана в фотохимических батареях — ячейках Гретцеля, в которых диоксид титана, являющийся полупроводником с широкой запрещенной зоной 3-3,2 эВ (в зависимости от кристаллической фазы) и развитой поверхностью, сенсибилизируется органическими красителями[25].
Цены и рынок[править | править код]
Цены на диоксид титана отличаются в зависимости от степени чистоты и марки. Так, особо чистый (99,999 %) диоксид титана в рутильной и анатазной форме стоил в сентябре 2006 года 0,5—1 доллара за грамм (в зависимости от размера покупки), а технический диоксид титана — 2,2—4,8 доллара за килограмм в зависимости от марки и объёма покупки.
Примечания[править | править код]
- ↑ https://www.cdc.gov/niosh/npg/npgd0617.html
- ↑ А. Е. Рикошинский. Мировой рынок пигментного диоксида титана. Состояние, тенденции, прогнозы // Лакокрасочные материалы 2002-2003. Справочник. — М.: Редакция еженедельника «Снабженец», 2003. — С. 53-61. — 832 с. — 3000 экз.
- ↑ 1 2 3 4 Химическая энциклопедия
- ↑ 1 2 3 4 5 6 7 8 Рабинович. В. А., Хавин З. Я. Краткий химический справочник Л.:Химия, 1977 с. 105
- ↑ Краткий справочник физико-химических величин. Изд. 8-е, перераб./Под ред. А. А. Равделя и А. М. Пономаревой. — Л.: Химия, 1983. С.60
- ↑ Кроме изменения стандартной энтальпии плавления там же с. 82
- ↑ изменение стандартной энтальпии (теплоты образования) при образовании из простых веществ, термодинамически устойчивых при 101,325 кПа (1 атм) и температуре 298 K
- ↑ стандартная энтропия при температуре 298 K
- ↑ изменение стандартной энергии Гиббса (теплоты образования) при образовании из простых веществ, термодинамически устойчивых при 101,325 кПа (1 атм) и температуре 298 K
- ↑ стандартная изобарная теплоёмкость при температуре 298 K
- ↑ Изменение энтальпии плавления. Данные по Химической энциклопедии с. 593
- ↑ https://monographs.iarc.fr/wp-content/uploads/2018/06/TR42-4.pdf
- ↑ Архивированная копия (недоступная ссылка). Дата обращения 27 января 2017. Архивировано 2 февраля 2017 года.
- ↑ Re-evaluation of titanium dioxide (E 171) as a food additive |
- ↑ https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2018.5366 https://www.efsa.europa.eu/en/efsajournal/pub/5366
- ↑ EFSA closes the door on titanium dioxide re-evaluation
- ↑ https://www.efsa.europa.eu/en/efsajournal/pub/4545 https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2016.4545
EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources added to Food), 2016. Scientific Opinion on the re-evaluation of titanium dioxide (E 171) as a food additive. EFSA Journal 2016;14(9):4545, 83 pp. doi:10.2903/j.efsa.2016.4545 - ↑ Во Франции запретили опасную пищевую добавку Е171 (рус.) (неопр.) ?. rosng.ru. Дата обращения 16 октября 2020.
- ↑ Summary of Color Additives for Use in the United States in Foods, Drugs, Cosmetics, and Medical Devices
- ↑ e-CFR Title 21 (Food and Drugs) Chapter I Subchapter A Part 73 (LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION) – §73.575 Titanium dioxide.
- ↑ https://49.rospotrebnadzor.ru/rss_all/-/asset_publisher/Kq6J/content/id/444267 Архивная копия от 7 октября 2018 на Wayback Machine – Список Д, Список К
- ↑ 1 2 3 4 TiO2 — Двуокись Титана — Диоксид титана, новости, цены, обзоры
- ↑ Ученые изобрели бумагу, которая не горит (рус.), Yoki.Ru (27 сентября 2006). Дата обращения 23 ноября 2017.
- ↑ На мировом рынке диоксида титана (недоступная ссылка). Новости. Titanmet.ru (16 декабря 2005). Дата обращения 22 августа 2014. Архивировано 28 сентября 2007 года.
- ↑
Grätzel, M. Dye-sensitized solar cells (англ.) // Journal of Photochemistry and Photobiology C: Photochemistry Reviews (англ.)русск. : journal. — 2003. — Vol. 4, no. 2. — P. 145—153.
Литература[править | править код]
- Ахметов Т. Г., Порфирьева Р. Т., Гайсин Л. Г. и др. Химическая технология неорганических веществ: в 2 кн. Кн. 1. — Под ред. Т. Г. Ахметова. — М.: Высшая школа, 2002. — ISBN 5-06-004244-8. С. 369—402.
- Некрасов Б. В. Основы общей химии. Т. I. — Изд. 3-е, испр. и доп. М.: Химия, 1973. — С. 644, 648.
- Химическая энциклопедия (электронная версия). — С. 593, 594
- Химия: Справ. изд. / В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. 2-е изд., стереотип. — М.: Химия, 2000. С. 411.
- Юрьев Ю. Н. Свойства тонких плёнок оксида титана (TiO[2) и аморфного углерода (а-С), осаждённых с помощью дуальной магнетронной распылительной системы: автореферат диссертации на соискание ученой степени кандидата технических наук: спец. 01.04.07]. — Томск, 2016. — 22 с.
Ссылки[править | править код]
- А. Е. Рикошинский. Мировой рынок пигментного диоксида титана. Состояние, тенденции, прогнозы // Лакокрасочные материалы 2002-2003. Справочник. — М.: Редакция еженедельника «Снабженец», 2003. — С. 53-61. — 832 с. — 3000 экз.
- TiO2 — Titanium Dioxide | Двуокись титана (диоксид титана) | Свойства, область применения, производители диоксида титана
- Международная карта химической безопасности для диоксида титана
- Titanium dioxide Информация из Химической базы данных Акронского университета
Источник