Через какой промежуточный продукт легко разлагающийся при нагревании

Через какой промежуточный продукт легко разлагающийся при нагревании thumbnail

Возьмите тигельными щипцами кусочек мела и прокалите его в пламени спиртовки. Напишите уравнение реакции разложения карбоната кальция. Опустите прокаленный мел в пробирку с дистиллированной водой, добавьте 2-3 капли фенолфталеина, отметьте окраску раствора, напишите уравнение реакции образования гидроксида кальция.

О п ы т 3

Получение гидроксида никеля

Опыт выполняется капельным методом.

Внесите по 2–4 капли 0,2 н. раствора соли никеля в 3 пробирки, добавьте в каждую по 4 капли 2 н. раствора гидроксида натрия, обратите внимание на окраску образовавшегося гидроксида никеля, напишите уравнение реакции. Проверьте растворимость гидроксида никеля в кислоте и избытке щелочи, для чего в одну пробирку добавьте 4–6 капель щелочи, в другую –2-3 капли 2 н. раствора соляной кислоты. Напишите уравнение протекающей реакции. Укажите характер гидроксида никеля.

О п ы т 4

Получение гидроксида алюминия

Опыт выполняется капельным методом. Внесите по 2–4 капли 0,2 н. раствора соли алюминия в 3 пробирки, добавьте в каждую по 2 капли 2 н. раствора гидроксида натрия, напишите уравнение реакции. Проверьте растворимость гидроксида алюминия в кислоте и избытке щелочи, для чего в одну пробирку добавьте 2-3 капли щелочи, в другую – 2-3 капли 2 н. раствора соляной кислоты. Напишите уравнение про-

текающих реакций. Определите свойства гидроксида алюминия.

О п ы т 5

Получение гидроксида меди

В пробирку налейте 1-2 мл 0,4 н. раствора соли меди, добавьте 3-4 мл 4 н. раствора гидроксида натрия, отметьте окраску образовавшегося осадка, напишите уравнение реакции. Закрепите в держателе пробирку и осторожно нагрейте ее в пламени спиртовки, обратите внимание на изменение цвета осадка, напишите уравнения реакции разложения гидроксида меди.

О п ы т 6

Получение уксусной кислоты

В пробирку поместите небольшое количество кристаллического ацетата натрия CH3COONa и по каплям прилейте 2 н. раствора соляной кислоты, обратите внимание на появление запаха уксуса, напишите уравнение реакции в молекулярной и молекулярно-ионной форме.

О п ы т 7

Получение угольной кислоты

В пробирку поместите небольшой кусочек мела и прилейте 2 н. раствор соляной кислоты. Опишите происходящие явления, напишите уравнение реакции в молекулярной и молекулярно-ионной форме.

О п ы т 8

Получение средней соли

Опыт выполняется капельным методом. Внесите в пробирку 2–4 капли 0,2 н. раствора соли бария, добавьте 2 капли 0,2 н. раствора сульфата натрия, напишите уравнение реакции в молекулярной и молекулярно-ионной форме.

О п ы т 9

Получение основной соли

Опыт выполняется капельным методом. Внесите в пробирку 2–4 капли 0,4 н. раствора соли кобальта, добавьте 2 капли 4 н. раствора гидроксида натрия, обратите внимание на образование голубого осадка основной соли кобальта, добавьте избыток гидроксида натрия, обратите внимание на изменение цвета осадка. Напишите уравнение реакции в молекулярной и молекулярно-ионной форме.

О п ы т 10

Получение кислой соли

Налейте в пробирку 2-3 мл насыщенного раствора гидроксида кальция, добавьте по каплям 2 н. раствора фосфорной кислоты до выпадения осадка средней соли фосфата кальция по реакции

3Ca(OH)2 + 2H3PO4 = Ca3(PO4)2↓ + 6H2O

В избытке фосфорной кислоты осадок растворяется с образованием кислой соли:

Ca3(PO4)2 + 4H3PO4 = 3Ca(H2PO4)2

Напишите уравнения приведенных реакций в молекулярно-ионной форме.

Контрольные вопросы и задачи

1. Через какой промежуточный продукт, легко разлагающийся при нагревании, можно получить оксид металла из его соли? Покажите на примерах: а) FeCl3 → Fe2O3; б) CuSO4 → CuO; в) Al(CH3COO)3 → Al2O3

2. Возможно ли взаимодействие между оксидами:

а) Li2O и SO3; г) BaO и MgO;

б) Na2O и BeO; д) N2O5 и ZnO?

в) Al2O3 и K2O;

3. Анализом установлено, что в образце оксида бария массовая доля примеси сульфата бария составляет 10 %. Как был проведен анализ, и какой объем раствора нужного реагента концентрации 2 моль/л был затрачен на обработку навески массой 5 г? (Ответ: 30 мл реагента.)

4. С какими из перечисленных веществ взаимодействует соляная кислота: MgO; AgNO3; SO3; CuSO4; Ca(OH)2; Cu; Fe; KOH?

5. Какие свойства гидроксидов NaOH, Al(OH)3, Ni(OH)2 могут быть использованы для их разделения из твердой смеси?

Источник

При выполнении различных заданий ЕГЭ по химии (например, задачи 34 или задания 32 “мысленный эксперимент”) могут пригодиться знания о том, какие вещества при нагревании разлагаются и как они разлагаются.

Рассмотрим термическую устойчивость основных классов неорганических веществ. Я не указываю в условиях температуру протекания процессов, так как в ЕГЭ по химии такая информация, как правило, не встречается. Если возможны различные варианты разложения веществ, я привожу наиболее вероятные, на мой взгляд, реакции.

Разложение оксидов

При нагревании разлагаются оксиды тяжелых металлов:

2Ag2O = 4Ag + O2

2HgO = 2Hg + O2

4CrO3 = 2Cr2O3 + O2

2Mn2O7 = 4MnO2 + 3O2

Разложение гидроксидов

Как правило, при нагревании разлагаются нерастворимые гидроксиды. Исключением является гидроксид лития, он растворим, но при нагревании в твердом виде разлагается на оксид и воду:

2LiOH = Li2O + H2O

Гидроксиды других щелочных металлов при нагревании не разлагаются.

Гидроксиды серебра (I) и меди (I) неустойчивы:

2AgOH = Ag2O + H2O

2CuOH = Cu2O + H2O

Гидроксиды большинства металлов при нагревании разлагаются на оксид и воду.

В инертной атмосфере (в отсутствии кислорода воздуха) гидроксиды хрома (III) марганца (II) и железа (II) распадаются на оксид и воду:

Читайте также:  Какие продукты можно есть при депрессии

2Cr(OH)3 = Cr2O3 + 3H2O

Mn(OH)2 = MnO + H2O

Fe(OH)2 = FeO + H2O

Большинство остальных нерастворимых гидроксидов металлов также при нагревании разлагаются:

2Fe(OH)3 = Fe2O3 + 3H2O

2Al(OH)3 = Al2O3 + 3H2O

Разложение кислот

При нагревании разлагаются нерастворимые кислоты.

Например, кремниевая кислота:

H2SiO3 = H2O + SiO2

Некоторые кислоты неустойчивы и подвергаются разложению в момент образования. Большая часть молекул сернистой кислоты и угольной кислоты распадаются на оксид и воду в момент образования:

H2SO3 = H2O + SO2↑

H2CO3 = H2O + CO2↑

В ЕГЭ по химии эти кислоты стоит записывать в виде оксида и воды.

Например, при действии водного раствора углекислого газа на карбонат калия в качестве реагента мы указываем не угольную кислоту, а оксид углерода (IV) и воду, но подразумеваем угольную кислоту при этом:

K2CO3 + H2O + CO2 = 2KHCO3

Азотистая кислота на холоде или при комнатной температуре частично распадается уже в водном растворе, реакция протекает обратимо:

2HNO2 = H2O + NO2↑ + NO↑

При нагревании выше 100оС продукты распада несколько отличаются:

3HNO2 = H2O + HNO3↑ + 2NO↑

Азотная кислота под действием света или при нагревании частично обратимо разлагается:

4HNO3 = 2H2O + 4NO2 + O2

Разложение солей

Разложение хлоридов

Хлориды щелочных, щелочноземельных металлов, магния, цинка, алюминия и хрома при нагревании не разлагаются.

Хлорид серебра (I) разлагается под действием света:

2AgCl → Ag + Cl2

Хлорид аммония при нагревании выше 340 оС разлагается:

NH4Cl → NH3 + HCl

Разложение нитратов

Нитраты щелочных металлов при нагревании разлагаются до нитрита металла и кислорода.

Например, разложение нитрата калия:

2KNO3 → 2KNO2 + O2

Видеоопыт разложения нитрата калия можно посмотреть здесь.

Нитраты магния, стронция, кальция и бария разлагаются до нитрита и кислорода при нагревании до 500 оС:

Ca(NO3)2 → Ca(NO2)2 + O2

Mg(NO3)2 → Mg(NO2)2 + O2

Ba(NO3)2 → Ba(NO2)2 + O2

Sr(NO3)2 → Sr(NO2)2 + O2

При более сильном нагревании (выше 500оС)  нитраты магния, стронция, кальция и бария разлагаются до оксида металла, оксида азота (IV) и кислорода:

2Ca(NO3)2 → 2CaО + 4NO2 + O2

2Mg(NO3)2 → 2MgО + 4NO2 + O2

2Sr(NO3)2 → 2SrО + 4NO2 + O2

2Ba(NO3)2 → 2BaО + 4NO2 + O2

Нитраты металлов, расположенных в ряду напряжений после магния и до меди (включительно) + нитрат лития разлагаются при нагревании до оксида металла, диоксида азота и кислорода:

2Cu(NO3)2 → 2CuО + 4NO2 + O2

2Pb(NO3)2 → 2PbО + 4NO2 + O2

4Al(NO3)3 → 2Al2O3 + 12NO2 + 3O2

4LiNO3 → 2Li2O + 4NO2 + O2

Нитраты серебра и ртути разлагаются при нагревании до оксида металла, диоксида азота и кислорода:

2AgNO3 → 2Ag + 2NO2 + O2

Hg(NO3)2 → Hg + 2NO2 + O2

Нитрат аммония разлагается при небольшом нагревании до 270оС оксида азота (I) и воды:

NH4NO3 → N2O + 2H2O

При более высокой температуре образуются азот и кислород:

2NH4NO3 → 2N2 + O2 + 4H2O

Разложение карбонатов и гидрокарбонатов

Карбонаты натрия и калия плавятся при нагревании.

Карбонаты лития, щелочноземельных металлов и магния разлагаются на оксид металла и углекислый газ:

Li2CO3 → Li2O + CO2

CaCO3 → CaO + CO2

MgCO3 → MgO + CO2

Карбонат аммония разлагается при 30оС на гидрокарбонат аммония и аммиак:

(NH4)2CO3 → NH4HCO3 + NH3

Гидрокарбонат аммония при дальнейшем нагревании разлагается на аммиак, углекислый газ и воду:

NH4HCO3 → NH3 + CO2 + H2O

Гидрокарбонаты натрия и калия при нагревании разлагаются на карбонаты, углекислый газ и воду:

2NaHCO3 → Na2CO3 + H2O + CO2

2KHCO3 → K2CO3 + H2O + CO2

Гидрокарбонат кальция при нагревании до 100оС разлагается на карбонат, углекислый газ и воду:

Ca(HCO3)2 → CaCO3 + H2O + CO2

При нагревании до 1200оС образуются оксиды:

Ca(HCO3)2 → CaO + H2O + 2CO2

Разложение сульфатов

Сульфаты щелочных металлов при нагревании не разлагаются.

Сульфаты алюминия, щелочноземельных металлов, меди, железа и магния разлагаются до оксида металла, диоксида серы и кислорода:

2MgSO4 → 2MgO + 2SO2 + O2

2CuSO4 → 2CuO + 2SO2 + O2

2BaSO4 → 2BaO + 2SO2 + O2

2Al2(SO4)3 → 2Al2O3 + 6SO2 + 3O2

2Fe2(SO4)3 → 2Fe2O3 + 6SO2 + 3O2

Сульфаты серебра и ртути разлагаются до металла, диоксида серы и кислорода:

Ag2SO4 → 2Ag + SO2 + O2

2HgSO4 → 2Hg + 2SO2 + O2

Разложение фосфатов, гидрофосфатов и дигидрофосфатов

Эти реакции, скорее всего, в ЕГЭ по химии не встретятся! Гидрофосфаты щелочных и щелочноземельных металлов разлагаются до пирофосфатов:

2Na2HPO4 →  H2O + Na4P2O7

2K2HPO4 →  H2O + K4P2O7

2CaHPO4 →  H2O + Ca2P2O7

Ортофосфаты при нагревании не разлагаются (кроме фосфата аммония).

Разложение сульфитов

Сульфиты щелочных металлов разлагаются до сульфидов и сульфатов:

4Na2SO3 →  Na2S + 3Na2SO4

Разложение солей аммония

Некоторые соли аммония, не содержащие анионы кислот-сильных окислителей, обратимо разлагаются при нагревании без изменения степени окисления. Это хлорид, бромид, йодид, дигидрофосфат аммония:

NH4Cl →  NH3 + HCl

NH4Br →  NH3 + HBr

NH4l →  NH3 + Hl

NH4H2PO4 →  NH3 + H3PO4

Cоли аммония, образованные кислотами-окислителями, при нагревании также разлагаются. При этом протекает окислительно-восстановительная реакция. Это дихромат аммония, нитрат и нитрит аммония:

NH4NO3 → N2O + 2H2O

NH4NO2 → N2 + 2H2O

Видеоопыт разложения нитрита аммония можно посмотреть здесь.

(NH4)2Cr2O7 → N2 + Cr2O3 + 4H2O

“Вулкан” – Разложение дихромата аммония

Разложение перманганата калия

2KMnO4 → K2MnO4 + MnO2 + O2

Читайте также:  Какие продукты надо на лагман

Разложение хлората и перхлората калия

Хлорат калия при нагревании разлагается до перхлората и хлорида:

4KClO3 → 3KClO4 + KCl

При нагревании в присутствии катализатора (оксид марганца (IV)) образуется хлорид калия и кислород:

2KClO3 → 2KCl + 3O2

Перхлорат калия при нагревании разлагается до хлорида и кислорода:

KClO4 → KCl + 2O2

Источник

При выполнении различных заданий ЕГЭ по химии (например, задачи 34 или задания 32 «мысленный эксперимент») могут пригодиться знания о том, какие вещества при нагревании разлагаются и как они разлагаются.

Рассмотрим термическую устойчивость основных классов неорганических веществ. Я не указываю в условиях температуру протекания процессов, так как в ЕГЭ по химии такая информация, как правило, не встречается. Если возможны различные варианты разложения веществ, я привожу наиболее вероятные, на мой взгляд, реакции.

При нагревании разлагаются оксиды тяжелых металлов:

2Ag2O = 4Ag + O2

2HgO = 2Hg + O2

4CrO3 = 2Cr2O3 + O2

2Mn2O7 = 4MnO2 + 3O2

Как правило, при нагревании разлагаются нерастворимые гидроксиды. Исключением является гидроксид лития, он растворим, но при нагревании в твердом виде разлагается на оксид и воду:

2LiOH = Li2O + H2O

Гидроксиды других щелочных металлов при нагревании не разлагаются.

Гидроксиды серебра (I) и меди (I) неустойчивы:

2AgOH = Ag2O + H2O

2CuOH = Cu2O + H2O

Гидроксиды большинства металлов при нагревании разлагаются на оксид и воду.

В инертной атмосфере (в отсутствии кислорода воздуха) гидроксиды хрома (III) марганца (II) и железа (II) распадаются на оксид и воду:

2Cr(OH)3 = Cr2O3 + 3H2O

Mn(OH)2 = MnO + H2O

Fe(OH)2 = FeO + H2O

Большинство остальных нерастворимых гидроксидов металлов также при нагревании разлагаются:

2Fe(OH)3 = Fe2O3 + 3H2O

2Al(OH)3 = Al2O3 + 3H2O

При нагревании разлагаются нерастворимые кислоты.

Например, кремниевая кислота:

H2SiO3 = H2O + SiO2

Некоторые кислоты неустойчивы и подвергаются разложению в момент образования. Большая часть молекул сернистой кислоты и угольной кислоты распадаются на оксид и воду в момент образования:

H2SO3 = H2O + SO2↑

H2CO3 = H2O + CO2↑

В ЕГЭ по химии лучше эти кислоты записывать в виде оксида и воды.

Например, при действии водного раствора углекислого газа на карбонат калия в качестве реагента мы указываем не угольную кислоту, а оксид углерода (IV) и воду, но подразумеваем угольную кислоту при этом:

K2CO3 + H2O + CO2 = 2KHCO3

Азотистая кислота на холоде или при комнатной температуре частично распадается уже в водном растворе, реакция протекает обратимо:

2HNO2 = H2O + NO2↑ + NO↑

При нагревании выше 100оС продукты распада несколько отличаются:

3HNO2 = H2O + HNO3↑ + 2NO↑

Азотная кислота под действием света или при нагревании частично обратимо разлагается:

4HNO3 = 2H2O + 4NO2 + O2

Разложение хлоридов

Хлориды щелочных, щелочноземельных металлов, магния, цинка, алюминия и хрома при нагревании не разлагаются.

Хлорид серебра (I) разлагается под действием света:

2AgCl → Ag + Cl2

Хлорид аммония при нагревании выше 340 оС разлагается:

NH4Cl → NH3 + HCl

Разложение нитратов

Нитраты щелочных металлов при нагревании разлагаются до нитрита металла и кислорода.

Например, разложение нитрата калия:

2KNO3 → 2KNO2 + O2

Видеоопыт разложения нитрата калия можно посмотреть здесь.

Нитраты магния, стронция, кальция и бария разлагаются до нитрита и кислорода при нагревании до 500 оС:

Ca(NO3)2 → Ca(NO2)2 + O2

Mg(NO3)2 → Mg(NO2)2 + O2

Ba(NO3)2 → Ba(NO2)2 + O2

Sr(NO3)2 → Sr(NO2)2 + O2

При более сильном нагревании (выше 500оС)  нитраты магния, стронция, кальция и бария разлагаются до оксида металла, оксида азота (IV) и кислорода:

2Ca(NO3)2 → 2CaО + 4NO2 + O2

2Mg(NO3)2 → 2MgО + 4NO2 + O2

2Sr(NO3)2 → 2SrО + 4NO2 + O2

2Ba(NO3)2 → 2BaО + 4NO2 + O2

Нитраты металлов, расположенных в ряду напряжений после магния и до меди (включительно) + нитрат лития разлагаются при нагревании до оксида металла, диоксида азота и кислорода:

2Cu(NO3)2 → 2CuО + 4NO2 + O2

2Pb(NO3)2 → 2PbО + 4NO2 + O2

4Al(NO3)3 → 2Al2O3 + 12NO2 + 3O2

4LiNO3 → 2Li2O + 4NO2 + O2

Нитраты серебра и ртути разлагаются при нагревании до металла, диоксида азота и кислорода:

2AgNO3 → 2Ag + 2NO2 + O2

Hg(NO3)2 → Hg + 2NO2 + O2

Нитрат аммония разлагается при небольшом нагревании до 270оС оксида азота (I) и воды:

NH4NO3 → N2O + 2H2O

При более высокой температуре образуются азот и кислород:

2NH4NO3 → 2N2 + O2 + 4H2O

Разложение карбонатов и гидрокарбонатов

Карбонаты натрия и калия плавятся при нагревании.

Карбонаты лития, щелочноземельных металлов и магния разлагаются на оксид металла и углекислый газ:

Li2CO3 → Li2O + CO2

CaCO3 → CaO + CO2

MgCO3 → MgO + CO2

Карбонат аммония разлагается при 30оС на гидрокарбонат аммония и аммиак:

(NH4)2CO3 → NH4HCO3 + NH3

Гидрокарбонат аммония при дальнейшем нагревании разлагается на аммиак, углекислый газ и воду:

NH4HCO3 → NH3 + CO2 + H2O

Гидрокарбонаты натрия и калия при нагревании разлагаются на карбонаты, углекислый газ и воду:

2NaHCO3 → Na2CO3 + H2O + CO2

2KHCO3 → K2CO3 + H2O + CO2

Гидрокарбонат кальция при нагревании до 100оС разлагается на карбонат, углекислый газ и воду:

Ca(HCO3)2 → CaCO3 + H2O + CO2

При нагревании до 1200оС образуются оксиды:

Ca(HCO3)2 → CaO + H2O + 2CO2

Разложение сульфатов

Сульфаты щелочных металлов при нагревании не разлагаются.

Сульфаты алюминия, щелочноземельных металлов, меди, железа и магния разлагаются до оксида металла, диоксида серы и кислорода:

Читайте также:  Какие продукты ускоряют обмен веществ и метаболизм

2MgSO4 → 2MgO + 2SO2 + O2

2CuSO4 → 2CuO + 2SO2 + O2

2BaSO4 → 2BaO + 2SO2 + O2

2Al2(SO4)3 → 2Al2O3 + 6SO2 + 3O2

2Fe2(SO4)3 → 2Fe2O3 + 6SO2 + 3O2

Сульфаты серебра и ртути разлагаются до металла, диоксида серы и кислорода:

Ag2SO4 → 2Ag + SO2 + O2

2HgSO4 → 2Hg + 2SO2 + O2

Разложение фосфатов, гидрофосфатов и дигидрофосфатов

Эти реакции, скорее всего, в ЕГЭ по химии не встретятся! Гидрофосфаты щелочных и щелочноземельных металлов разлагаются до пирофосфатов:

2Na2HPO4 →  H2O + Na4P2O7

2K2HPO4 →  H2O + K4P2O7

2CaHPO4 →  H2O + Ca2P2O7

Ортофосфаты при нагревании не разлагаются (кроме фосфата аммония).

Разложение сульфитов

Сульфиты щелочных металлов разлагаются до сульфидов и сульфатов:

4Na2SO3 →  Na2S + 3Na2SO4

Разложение солей аммония

Некоторые соли аммония, не содержащие анионы кислот-сильных окислителей, обратимо разлагаются при нагревании без изменения степени окисления. Это хлорид, бромид, йодид, дигидрофосфат аммония:

NH4Cl →  NH3 + HCl

NH4Br →  NH3 + HBr

NH4l →  NH3 + Hl

NH4H2PO4 →  NH3 + H3PO4

Cоли аммония, образованные кислотами-окислителями, при нагревании также разлагаются. При этом протекает окислительно-восстановительная реакция. Это дихромат аммония, нитрат и нитрит аммония:

NH4NO3 → N2O + 2H2O

NH4NO2 → N2 + 2H2O

Видеоопыт разложения нитрита аммония можно посмотреть здесь.

(NH4)2Cr2O7 → N2 + Cr2O3 + 4H2O

Через какой промежуточный продукт легко разлагающийся при нагревании

Разложение перманганата калия

2KMnO4 → K2MnO4 + MnO2 + O2

Разложение хлората и перхлората калия

Хлорат калия при нагревании разлагается до перхлората и хлорида:

4KClO3 → 3KClO4 + KCl

При нагревании в присутствии катализатора (оксид марганца (IV)) образуется хлорид калия и кислород:

2KClO3 → 2KCl + 3O2

Перхлорат калия при нагревании разлагается до хлорида и кислорода:

KClO4 → KCl + 2O2

Источник

           Опыт
8. Получение средней соли.

    
Опыт выполняется капельным методом.

    
Внесите  1-2 капли соли бария 
в  ячейку капельного планшета,
добавьте 1 каплю раствора сульфата 
натрия,  напишите уравнение реакции 
в молекулярной и молекулярно-ионной 
форме.

         
Опыт 9. Получение основной соли.

    
Опыт выполняется капельным методом.

    
Внесите  1-2 капли соли кобальта 
в  ячейку капельного планшета,
добавьте 1 каплю раствора гидроксида 
натрия, обратите внимание на 
образование голубого осадка 
основной соли кобальта, добавьте избыток
гидроксида натрия, обратите внимание
на изменение цвета осадка. Напишите уравнение
реакции в молекулярной и молекулярно-ионной
форме.

        
Опыт 10. Получение кислой соли.

    
Налейте в пробирку 2-3 мл насыщенного 
раствора гидроксида кальция, добавьте
по каплям раствора фосфорной кислоты
до выпадения осадка средней соли фосфата
кальция по реакции:       
3 Ca(OH)2 + 2 H3PO4 = Ca3(PO4)2
↓ + 6 H2O

В избытке 
фосфорной кислоты осадок растворяется
с образованием кислой соли:

                      
Ca3(PO4)2 + 4 H3PO4
=  3 Ca(H2 PO4)2

Напишите 
уравнения приведенных реакций 
в молекулярно-ионной форме.

       
Опыт 11. Получение комплексной соли.

    
В пробирку налейте 1-2 мл раствора 
сульфата меди, добавьте 1-2 мл водного 
раствора  аммиака (гидроксида аммония
NH4OH), отметьте окраску образовавшегося
осадка гидроксосульфата меди:     
2 CuSO4 + 2 NH4OH = (CuOH)2SO4
↓+ (NH4)2SO4

   
Добавьте избыток раствора аммиака 
до растворения осадка и образования  
комплексных солей:       
(CuOH)2SO4 + 8 NH4OH = [Cu(NH3)4](OH)2
+ [Cu(NH3)4]SO4 + 8 H2O.

   
Отметьте окраску образовавшегося 
раствора. Эта реакция является 
характерной и используется для 
обнаружения ионов меди в растворе.

КОНТРОЛЬНЫЕ ВОПРОСЫ К ЗАЩИТЕ ЛАБОРАТОРНОЙ
РАБОТЫ

  1. Через какой промежуточный продукт, легко
    разлагающийся при нагревании, можно получить
    оксид металла из его соли? Покажите на
    примерах:    FeCl3 → Fe2O3;

                    
CuSO4 → CuO;      
Al(CH3COO)3  → Al2O3.

  1. Возможно ли взаимодействие между оксидами:    Li2O и SO3;     
    Na2O и BeO; 

      Al2O3
и K2O;     BaO и MgO;    
N2O5 и ZnO?

  1. Анализом установлено, что в образце оксида бария массовая доля примеси   сульфата бария составляет 10%.  Как был проведен анализ и какой объем раствора нужного реагента концентрации 2 моль/л был затрачен на обработку
    навески массой 5 г?

                      
Ответ: 30 мл реагента.

  1. С какими из перечисленных веществ взаимодействует соляная кислота:

                       
MgO;   AgNO3;   SO3;   
CuSO4;   Ca(OH)2;   Cu;  
Fe;   KOH?

  1. Какие свойства гидроксидов   NaOH,   Al(OH)3,  
    Ni(OH)2 могут быть использованы для
    их разделения из твердой смеси?
  2. Найдите массовую долю гидроксида натрия, превратившегося в карбонат за счет поглощения углекислого газа из воздуха, если масса гидроксида  возросла с 200г до 232,5 г. Чему
    равен объем поглощенного при этом CO2
    (условия нормальные).

               
Ответ: 50%, 28 л.

  1. Какими способами можно получить из данной соли другую с тем же катионом

      или тем же анионом:       
NaCl  → AgCl;       Ba(NO3)2 
→ BaSO4; 

                                         
Fe2(SO4)3  → FeCl3;       
Na2CrO4  → BaCrO4 ?

  1. При помощи каких реакций можно осуществить следующие переходы:
    1. Fe  → FeCl2  → FeCl3 
      → FeOHSO4  → Fe2O3  →
      Fe;
    2. Zn  → ZnS → ZnO → (ZnOH)2SO4
      → ZnCl2 → ZnO →Zn.
  2. Какой объем  CO2 (условия нормальные)
    потребуется для растворения 1,0 г

свежеосажденного CaCO3? 
Какие процессы произойдут в растворе
при:

а) кипячении, б) добавлении щелочи, в)
добавлении соляной кислоты?

              
Ответ: 0,224 л.

  1. К какому классу относится каждое из следующих соединений:   Cs2O;   Na[Al(OH)4];

   H4SiO4;   NO2;   
[Fe(OH)2]2SO4;   Ca(HCO3)2?

ЛИТЕРАТУРА

  1. Практикум по общей и неорганической химии./ Под ред. Н.Н.Павлова, В.И.Фролова. – 2-е изд. – М.: Дрофа, 2002. – 304 с.
  2. Н.Б. Любимова. Вопросы и задачи по общей и неорганической химии. – М.: Высш. шк., 1990. – 351 с.
  3. Г.Н. Фадеев, Н.Н. Двуличанская. Решение задач по курсу «Химия» для нехимических вузов. Ч.1. – М.: Дом педагогики, 2000. – 72 с.
  4. А.А. Гуров, Ф.З. Бадаев, Л.П. Овчаренко, В.Н. Шаповал. Химия.
    –М.: Изд. МГТУ, 2004. – 748 с.

Источник