Благодаря какому свойству твердых тел можно получать
Barsko 5 лет назад Основное свойство, которое можно использовать для получения различных металлов из твердых тел – это плавкость. Под воздействием высоких температур можно расплавить твердое тело (к примеру руду содержащую железо), и в итоге получить металл. модератор выбрал этот ответ лучшим дольфаника 5 лет назад Когда твердое тело переходит в жидкое, то это называется в металлургической промышленности плавкой, плавлением. В процессе плавления из руды получают металл через повышение температуры. А если при плавке к одному металлу добавить другой, то получаемый металл приобретает другие свойства. Так чугун отличается по свойствам от алюминия, а сталь от железа. Свойства металлов позволяют их широко применять в производстве, а потребитель получает наиболее удобный для использования продукт. Например, консервная банка открывается легко, но в последние годы, видимо, в металл стали добавлять другое сырье, потому что открывашками некоторые банки не открываются. крышки гнутся. Как известно в природе металлы находятся чаще всего в форме руды – полезного ископаемого в котором содержатся компоненты того или иного металла и минералы. Чистые металлы в природе встречаются редко и относятся к благородным. Из твердого же тела, руды, получить металл можно используя свойство такого тела при повышении температуры переходить из твердого состояния в жидкое, то есть плавление. При этом температура плавления входящих в руду минералов различная, так же как и их удельный вес. Поэтому в расплаве легко добиться отделения центрального компонента-металла от всевозможных примесей и таким образом получить чистый металл. Колючка 555 4 года назад Конечно же это плавкость. Для придания определенной формы металлу, будь то нож или мясорубка, его доводят до температуры плавления и выше. Можно жидкий металл залить в форму и получить изделие или нагреть до такого состояния, когда он становится поддатлив и его можно гнуть. Вкус Лайма 3 года назад Речь идет о плавкости. Благодаря данному свойству, твердые тела при определенной температуре (высокой) могут менять состояние и становиться жидкостью. У разных твердых тел температура плавления различается. По этому критерию металлы делят на тугоплавкие и легкоплавкие. Марлена 4 года назад Есть такое свойство у твердых тел – плавкость. Они плавятся и с помощью этого свойства можно получать металлы. Причем разные металлы. Под воздействием температуры и получаются металлы, к примеру из руды. Наверное прежде – это температура плавления, при которой металлы переходят в жидкое состояние, а примеси окисляются.. Для лучшего получения металлов применяют окислители примесей, в виде присадок и восстановители металла (например кокс). Это относится для металлов, получаемых выплавлением из руды (например железа из чугуна). Для некоторых металлов-это получение из расплава (алюминий из бокситов). Металлы можно получить благодаря плавкости твёрдых тел, которые в своём составе содержат соединения компонентов этих металлов – полезные ископаемые или руда (железная руда, свинцовая руда, золотая руда, никелевая руда, цинковая руда и т. д). Плавкость – способность элемента переходить из твёрдого состояния в жидкое под воздействием температуры. Мой ответ: это свойство – плавкость. storus 2 года назад Способность твердых тел, которая позволяет из руды получать металл, называется плавкостью. Благодаря ей наши далёкие предки научились делать различные прочные инструменты и оружие. Плавкость позволяет металлу при определённой температуре переходить из твердого состояния в жидкое. Таким образом можно очистить его от примесей и получить чистый материал. kacevalova 5 лет назад Я не сильна в физике и химии но знаю точно что только благодаря такому свойству как “ПЛАВЛЕНИЯ”, проведя/пройдя процесс плавления металлов, по окончанию мы можем получить металл :
Знаете ответ? |
Источник
Что такое металл? Казалось бы, а что тут думать и гадать? Металл – это что-то довольно тяжелое, прочное, с характерным металлическим блеском, хорошо проводит тепло и электричество, пластичное, можно ковать. Вот сталь, например.
Однако, оказывается, что все далеко не так просто, и металлы относятся именно к металлам только по некой совокупности характеристик и то, достаточно условно.
Когда мы говорим – «металл», то чаще всего подразумеваем достаточно узкую группу химических элементов, таких как: железо, медь, алюминий, золото и серебро. Можно сказать, что это – «классические металлы», но химики столкнулись с задачей классификации металлов достаточно давно и до сих пор прийти к единому мнению не могут. Все достаточно условно.
Возьмем, к примеру, обычную ртуть. По совокупности признаков ее принято считать металлом, но, простите, это – жидкость, а как же кристаллическая решетка, в которой появляются свободные электроны и на этом основана хорошая электропроводность и тому подобные свойства металлов?
Но идем далее, металл в нашем представлении, прежде всего, ассоциируется со сталью, материалом очень прочным, из которого делают ножи, применяемые на кухне. Но среди металлов есть не только жидкие, такие как ртуть, галлий или франций, а более похожие на пластилин, такие как калий, натрий и литий. И еще десяток металлов, которые сегодня можно получить не только в микроскопических дозах, в химической лаборатории и пригодных только для изучения химических же свойств этих металлов, а уже в качестве, условно говоря, слитков, но которые такие же мягкие, как пластилин.
Противоположное пластичности свойство – твердость и хрупкость так же в полной мере присутствуют среди свойств разнообразных металлов. Можно сослаться на чугун, но чугун – это сплав, сплав железа с углеродом, а если рассматривать «химически чистые» образцы, то среди металлов есть такие как вольфрам, известный не только тем, что из него делают нити накаливания в лампочках, но и применяют при изготовлении металлорежущего инструмента. К таким же абсолютно непластичным металлам относятся висмут и марганец.
Таким образом, получается, что всеобъемлющих характеристик химического элемента, по которым его можно отнести к металлам – не существует. Существует только совокупность характеристик, в том числе и химические свойства, по которым, с достаточной степенью условности, тот или иной химический элемент можно отнести к металлам. Существенно упрощает ситуацию только то, что в обыденной жизни мы сталкиваемся с достаточно ограниченным кругом веществ, которые относятся к металлам.
Тот же вольфрам мы можем встретить только в виде тончайшей нити в герметичной колбе электрической лампочки. А свинец и олово, в противоположность вольфраму, обладающие большой пластичностью и низкой температурой плавления, и, что немаловажно – почти нетоксичные, по большому счету, встречаются только у рыбаков и электриков, и так со всеми остальными металлами.
Единственными свойствами, объединяющими наибольшую группу химических элементов, являются высокая электропроводность, теплопроводность и характерный «металлический блеск». Но «разброс» значений весьма велик.
Но опять же этим металлическим блеском и хорошей электропроводностью обладает графит, одна из форм углерода.
Поэтому вывод может быть только один – не заморачиваться, да и в обыденной жизни это не нужно.
Источник
Электроны в атоме имеют определенные дискретные значения (уровни) энергии. При сближении атомов друг с другом и при образовании кристалла у электронов появляется возможность обмениваться местами, проходить через потенциальные барьеры. В результате таких переходов одинаковые уровни энергии расщепляются, причем разность соседних уровней энергии определяется энергией взаимодействия атомов друг с другом. Число атомов в одном кубическом сантиметре кристалла N ~ 1022. Каждый атомный уровень расщепляется на N уровней, расстояния между которыми тем меньше, чем больше N. В пределе $N to infty$ они сливаются, образуя зоны разрешенных значений энергии, ширина которых тем больше, чем больше взаимодействие между соседними атомами. На каждый уровень в зоне в соответствии с принципом Паули можно поместить два электрона с противоположными спинами, а всего в зону – 2N электронов. Зонное состояние электрона похоже и на состояние электрона в атоме, и на состояние свободного электрона, поскольку он может перемещаться от атома к атому.
Таким образом, состояние электрона в кристалле будет описываться заданием номера зоны, которой он принадлежит, и квазиимпульсом, определяющим его энергию в зоне. Выше уже отмечалось, что понятие квазиимпульса является важным и подчеркивает его отличие в твердом теле от импульса свободной частицы. Так как квазиимпульс – вектор, удобно говорить о пространстве квазиимпульсов, или p-пространстве (как для свободных электронов) . Если зона заполнена электронами, то это означает, что в р-пространстве данной зоны все места заняты электронами: в каждой точке пространства по два электрона.
Если зона заполнена частично, то в р-пространстве есть свободные от электронов области. Поверхность равных энергий, отделяющая занятые состояния от свободных, и есть поверхность Ферми. Электроны могут изменять свой квазиимпульс, если им есть куда перемещаться в р-пространстве. Если же все р-пространство занято электронами, то подобный процесс невозможен – принцип Паули это запрещает
. Поэтому кристаллы, у которых есть частично заполненные зоны, должны проводить электрический ток – это металлы. Металлическое состояние возникает и тогда, когда перекрываются заполненные и пустые зоны.
Кристаллы, у которых есть только полностью заполненные и полностью пустые зоны, являются изоляторами, или диэлектриками. Те из изоляторов, у которых при тепловом возбуждении заметное число электронов попадает в пустую зону, называются полупроводниками и могут проводить ток при конечных температурах. Возможна ситуация, когда при абсолютном нуле зоны незначительно перекрываются. Такого рода объекты называются полуметаллами (например, висмут, олово) и ведут себя при низких температурах как металлы, а при высоких как полупроводники. У полуметаллов объем, охватываемый поверхностью Ферми, мал по сравнению с объемом ячейки р-пространства, доступным для электронов. У бесщелевых полупроводников, у которых расстояние между заполненной и пустой зонами равно нулю, поверхность Ферми – линия или точка. У изоляторов площадь поверхности Ферми равна нулю – ее просто нет. Энергия электрона в кристалле уже не квадратичная функция импульса, как для свободных электронов.
Источник
1
10 ответов:
5
0
Основное свойство, которое можно использовать для получения различных металлов из твердых тел – это плавкость. Под воздействием высоких температур можно расплавить твердое тело (к примеру руду содержащую железо), и в итоге получить металл.
2
0
Когда твердое тело переходит в жидкое, то это называется в металлургической промышленности плавкой, плавлением. В процессе плавления из руды получают металл через повышение температуры. А если при плавке к одному металлу добавить другой, то получаемый металл приобретает другие свойства. Так чугун отличается по свойствам от алюминия, а сталь от железа.
Свойства металлов позволяют их широко применять в производстве, а потребитель получает наиболее удобный для использования продукт. Например, консервная банка открывается легко, но в последние годы, видимо, в металл стали добавлять другое сырье, потому что открывашками некоторые банки не открываются. крышки гнутся.
2
0
Как известно в природе металлы находятся чаще всего в форме руды – полезного ископаемого в котором содержатся компоненты того или иного металла и минералы. Чистые металлы в природе встречаются редко и относятся к благородным. Из твердого же тела, руды, получить металл можно используя свойство такого тела при повышении температуры переходить из твердого состояния в жидкое, то есть плавление. При этом температура плавления входящих в руду минералов различная, так же как и их удельный вес. Поэтому в расплаве легко добиться отделения центрального компонента-металла от всевозможных примесей и таким образом получить чистый металл.
2
0
Конечно же это плавкость. Для придания определенной формы металлу, будь то нож или мясорубка, его доводят до температуры плавления и выше. Можно жидкий металл залить в форму и получить изделие или нагреть до такого состояния, когда он становится поддатлив и его можно гнуть.
1
0
Есть такое свойство у твердых тел – плавкость. Они плавятся и с помощью этого свойства можно получать металлы. Причем разные металлы. Под воздействием температуры и получаются металлы, к примеру из руды.
1
0
Речь идет о плавкости. Благодаря данному свойству, твердые тела при определенной температуре (высокой) могут менять состояние и становиться жидкостью. У разных твердых тел температура плавления различается. По этому критерию металлы делят на тугоплавкие и легкоплавкие.
0
0
Наверное прежде – это температура плавления, при которой металлы переходят в жидкое состояние, а примеси окисляются..
Для лучшего получения металлов применяют окислители примесей, в виде присадок и восстановители металла (например кокс).
Это относится для металлов, получаемых выплавлением из руды (например железа из чугуна).
Для некоторых металлов-это получение из расплава (алюминий из бокситов).
0
0
Я не сильна в физике и химии но знаю точно что только благодаря такому свойству как “ПЛАВЛЕНИЯ”, проведя/пройдя процесс плавления металлов, по окончанию мы можем получить металл :
- разной формы
- смешанного/разного состава
- разного веса
- разного цвета.
0
0
Металлы можно получить благодаря плавкости твёрдых тел, которые в своём составе содержат соединения компонентов этих металлов – полезные ископаемые или руда (железная руда, свинцовая руда, золотая руда, никелевая руда, цинковая руда и т. д).
Плавкость – способность элемента переходить из твёрдого состояния в жидкое под воздействием температуры.
Мой ответ: это свойство – плавкость.
0
0
Способность твердых тел, которая позволяет из руды получать металл, называется плавкостью. Благодаря ей наши далёкие предки научились делать различные прочные инструменты и оружие.
Плавкость позволяет металлу при определённой температуре переходить из твердого состояния в жидкое. Таким образом можно очистить его от примесей и получить чистый материал.
Читайте также
В общем и целом, правительство, ВОЗ и урановые компании осуществляют контроль за обращением урана и его продуктов, мониторингом окружающей среды. Причём функции контроля и мониторинга каждая из организаций выполняет силами своих собственные подразделений, независимых друг от друга.
Для уменьшения негативного влияния урана на окружающую среду проводятся исследования по воздействию урана на живые организмы, разрабатываются и устанавливаются нормативы содержания урана, его предельно допустимые концентраций в воздухе (ПДК 0,015 мг/м3), почве и воде (ПДК 30 мкг/л), чем занимается ВОЗ в лице Международного комитета по радиологической защите.
Правительства стран, производящих добычу и переработку урана, разрабатывают законодательные акты, в соответствии с рекомендациями ВОЗ, и осуществляют контроль за их соблюдением на предприятиях начиная их от проектирования до эксплуатации.
Уранодобывающие компании во исполнение установленных законов, регламентирующих влияния урана на окружающую среду, занимаются поиском, внедрением и использованием прогрессивных технологий, позволяющих снизить воздействие урана на персонал, население и территории, находящееся вблизи их производственных объектов.
Если начать делать из железа, то придется перечерчивать карту мира. Иначе вы вместо Америки попадете в Африку. Разница в показаниях будет примерно 135*
Люки канализационные чугунные предназначены для обеспечения безопасности пешеходов на улицах, безопасности автомобильного движения и для безопасного доступа к подземным инженерным коммуникациям. Марка люка и, соответственно вес, зависит от места установки, то есть от величины, припадающей на них нагрузки. Поэтому промышленность выпускает люки – легкие; средние; тяжелые; магистральные тяжелые; сверхтяжелые. Вес люка складывается из 2-х величин – веса корпуса и веса крышки, причем корпус люка может иметь разную высоту, что тоже влияет на вес и корпуса и всего люка. Например:
- Люк Л (А15 легкий) вес – 35- 42 кг
- Люк С (В125 средний) вес – 35-66 кг
- Люк Т (С250 тяжелый) вес – 51-120 кг
Всё зависит от массы металла, который нужно расплавить и от его формы. Посмотрим, какие металлы самые легкоплавкие. Ртуть расплавлять не нужно, она и так жидкая. Цезий плавится при 28°С, нор самовоспламеняется на воздухе, его плавить не нужно. Галлий плавится при температуре 30°С, его (в ампуле) можно расплавить подмышкой или (в небольшим количестве) – расплавить дыханием на ладони. Рубидий плавится при 39°С, очень активный, но можно расплавить теплой водой, если он в запаянной ампуле. Горячей водой можно расплавить (в запаянных ампулах) калий (плавится при 63°С) и натрий (98°С). Индий плавится при 156°С – никаких проблем. Литий (186°С) плавим на газу в запаянной ампуле. Олово (232°С) плавится паяльником. Висмут (плавится при 271°С), таллий (248°С – яд!), кадмий (321°С – ядовит!) и свинец (327°С) расплавляются тоже легко. Цинк (419°С) я плавил на газу в больших количествах в консервной банке. Сурьме (631°С) может плавиться в запаянной тугоплавкой ампуле, иначе загорится. Магний (651°С) тоже легко загорается, но в инертной атмосфере лента из магния расплавится. Алюминий (660°С каждый может расплавить, если взять проволоку, только капелька расплава повиснет с чехольчике из тугоплавкого оксида алюминия. Барий (660°С) и стронций (770°С) слишком активны на воздухе. Но даже серебро (961°С), золото (1063°С) и медь (1083°) можно расплавить на газу, если взять тонкую проволоку (маленький теплоотвод) и сунуть ее конец в самое горячую часть пламени (синюю) – образуется на конце проволоки маленький королек расплавленного металла. А вот марганец (1250°С) и тем более кобальт, никель и железо уже не расплавить.
Зайдите в любой хозяйственный магазин. там есть ведра (может быть есть и корыта) из оцинкованной стали – белые серебристые. Или посмотри новые, свежеустановленные на домах, водосточные трубы. Они тоже из оцинковки. Цинкуют в основном железные изделия, чтобы защитить их от коррозии. Оцинкованные изделия не красят, так как железные изделия (неоцинкованные) красят тоже для защиты от коррозии.
Источник